CS 418: Interactive Computer Graphics

Environment Mapping

Eric Shaffer

Some slides adapted from Angel
and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Environment Mapping

O How can we render reflections with a rasterization engine?
When shading a fragment, usually don’t know other scene geometry
Answer: use texture mapping....

O Create a texture of the environment
Map it onto mirror object surface

O Any suggestions how generate (u,v)?

Types of Environment Maps

a) Sphere around object (sphere map) b) Cube around object (cube map)

N
A\

R /|

Sphere Mapping

O Classic technigue...
O Noft supported by WebGL

O OpenGL supports sphere mapping

which requires a circular texture map 5 g/’////_/m\o 3
1 N M "‘-;.‘\'/‘ /4 /A H’\'\'H |
equivalent to an image taken with a v “l_}

fisheye lens

Sphere Mapping Example

Sphere map Sphere map
(texture) applied on torus

Sphere Mapping Limitations

O Visual artifacts are common
O Sphere mapping is view dependent

O Acquisition of images non-trivial
Need fisheye lens

O Orrender from fisheye lens A Gl g el iinfe
)) : . / silhouette: edge.
Cube maps are easier to acquire 5 -..“< Also lots of black sparkles.

0 Orrender . Flickers in animations.

Acquiring a Sphere Map....

O Take a picture of a shiny sphere in a real environment

O Orrender the environment into a texture (see next slide)

Why View Dependent?

O Conceptually a sphere map
Is generated like ray-tracing

O Records reflection under
orthographic projection
From a given view point

O What is a drawback of thise

(0,0,1)

origin

~Y

¢ &'d]'ust]

"™~ bottom of spheremap

NY

Cube mapping takes a different approach....
Imagine an object is in a box
...and you can see the environment through that box

Forming a Cube Map

e Use 6 cameras directions from scene center

o each with a 90 degree angle of view

o — =

. ':r~.v1§l. cowplil »¥g

A NS

Reflection Mapping

e Need to compute reflection vector, r

How Does WebGL Index into Cube Map?

To access the cube map you compute
R=2(NV)N-V

*Then, in your shader O

vecd texColor = textureCube (texMap, R);

eHow does WebGL compute the index?

e Assume object at origin
e Largest magnitude component of R
determines face of cube
e Other two components give texture coordinates

Indexing into a Cube Map

void convert_xyz_to_cube_uv(float x, floaty, float z, int *index, float *u, float *v)

{
float absX = fabs(x);

float absY = fabs(y);
float absZ = fabs(z);

int isXPositive =x>0¢21:0;
float maxAxis, uc, vc;

// POSITIVE X

if (isXPositive && absX >= absY && absX >= absZ) {
// u (0to 1) goes from +z 1o -z
// v (0to 1) goes from -y to +y
MAaxAXxis = absX;

uc = -z
VC =y
*index = 0;
}

// Convert range from-1to 1to 0to 1
*u = 0.5f * (uc / maxAxis + 1.0f);
*v = 0.5f * (vc / maxAxis + 1.0f);

}

O R=(-4,3,-1)
O Normalize so max value has magnitude of 1
R=(-1, %, - ")

Remap texture coordinates...x,y,z are in [-1,1]
Need them on [0, 1]

O v="%+"%x% =0.875

O u="%+%x-%=0.37/5

O Use face x = -1
O Texture coordinates of (u,v) = (0.375, 0.875)

WebGL Implementation

O WebGL supports only cube maps
vec4 texColor = textureCube(mycube, texcoord);
desktop OpenGL also supports sphere maps

O First must form map
Use images from a real camera
Form images with WebGL

O Texture map it to object

Vertex Shader

varying vec3 R;

attribute vec4 vPosition;

attribute vec4 vNormal;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

void main(){
//...other code
gl_Position = projectionMatrix*ModelViewMatrix*vPosition;
vec4 eyePos = ModelViewMatrix*vPosition;
vec4 N = ModelViewMatrix*vNormal;
R =reflect(eyePos.xyz, N.xyz); }

Fragment Shader

precision mediump float;

varying vec3 R;
uniform samplerCube texMap;

void main()

{

vec4 texColor = textureCube(texMap, R);
gl_FragColor = texColor;

}

-

Limitations

O What do you not see here that you should?

Issues

O Assumes environment is very far from object
(equivalent to the difference between near and distant lights)

O Object cannot be concave (no self reflections possible)
O No reflections between objects

e Can also use cube map for refraction (transparent)

Reflection Refraction

Reflection Refraction

Need to Compute Refraction Vector

I=rI_, +Id,.f + 7 +Imﬁr +1I

spec

Snell's Law

e Transmitted direction obeys Snell’s law
e Snell’s law: relationship holds in diagram below

sin(8,) _ sin6))

Cy G

faster

slower

&, t Cq. C; are speeds of light in
medium 1 and 2

Medium is Important

If ray goes from faster to slower medium, ray is bent
towards normal

If ray goes from slower to faster medium, ray is bent
away from normal

cl/c2 is important. Usually measured for medium-to-
vacuum. E.g water to vacuum

Some measured relative c1/c2 are:

e Air:99.97%

e Glass: 52.2% to 59%

e Water: 75.19%

e Sapphire: 56.50%

e Diamond: 41.33%

In GLSL, the refract
function expects the
index of refraction to
be specified as
cl/c2 where:

C1 is the outside
medium

C2is the inside
medium

So to go from air to
glass you would use
99.97/52.2

Refraction Vertex Shader

void main() {
gl Position = Projection*ModelView*vPosition:

vecd eyePos = vPosition: /{ calculate view vector V

vecd NN = ModelView*Normal; // transform normal

vec3 N =normalize(NN.xyz): // normalize normal

T = refract(eyePos.xyz. N. iorefr): // calculate refracted vector T

} '\
Was previously R = reflect(eyePos.xyz. N):

Tis a varying....

Also eyePos.xyz needs to be the normalized view direction

Refraction Fragment Shader

void main()

{

vecd refractColor = textureCube(RefMap. T): // look up texture map using T
refractcolor = mix(refractcolor, WHITE. 0.3): // mix pure color with 0.3 white

gl FragColor = texColor:
i

Tis a varying....
RefMap is a uniform

What's Wrong with this Code®e

O From an actual published book...which has some good stuff in it:

7. And then in the fragment shader's main function, add the code to actually sample the cubemap and blend it with the base texture:

gl FragColor = textureZD(uSampler, vTextureCoord) * textureCube (uCubeSampler, vVertexNormal);

8. We should now be able to reload the file in a browser and see the scene shown in the next screenshot:

WebGL Beginner's Guide - Chapter 7
Cubemap [,_,,_._,]

