
CS 418: Interactive Computer Graphics

Environment Mapping

Eric Shaffer

Some slides adapted from Angel
and Shreiner: Interactive Computer

Graphics 7E © Addison-Wesley 2015

Environment Mapping

 How can we render reflections with a rasterization engine?

 When shading a fragment, usually don’t know other scene geometry

 Answer: use texture mapping….

 Create a texture of the environment

 Map it onto mirror object surface

 Any suggestions how generate (u,v)?

Types of Environment Maps

Sphere Mapping

 Classic technique…

 Not supported by WebGL

 OpenGL supports sphere mapping

which requires a circular texture map

equivalent to an image taken with a

fisheye lens

5

Sphere Mapping Example

Sphere Mapping Limitations

 Visual artifacts are common

 Sphere mapping is view dependent

 Acquisition of images non-trivial

 Need fisheye lens

 Or render from fisheye lens

 Cube maps are easier to acquire

 Or render

Acquiring a Sphere Map….

 Take a picture of a shiny sphere in a real environment

 Or render the environment into a texture (see next slide)

Why View Dependent?

 Conceptually a sphere map

is generated like ray-tracing

 Records reflection under

orthographic projection

 From a given view point

 What is a drawback of this?

9

Cube Map

Cube mapping takes a different approach….

Imagine an object is in a box

…and you can see the environment through that box

Forming a Cube Map

Reflection Mapping

1

2

How Does WebGL Index into Cube Map?

V
R

•To access the cube map you compute

R = 2(N·V)N-V

•Then, in your shader

•How does WebGL compute the index?

•Assume object at origin

•Largest magnitude component of R

determines face of cube

•Other two components give texture coordinates

vec4 texColor = textureCube(texMap, R);

Indexing into a Cube Map
void convert_xyz_to_cube_uv(float x, float y, float z, int *index, float *u, float *v)
{

float absX = fabs(x);
float absY = fabs(y);
float absZ = fabs(z);

int isXPositive = x > 0 ? 1 : 0;
…
float maxAxis, uc, vc;

// POSITIVE X
if (isXPositive && absX >= absY && absX >= absZ) {

// u (0 to 1) goes from +z to -z
// v (0 to 1) goes from -y to +y
maxAxis = absX;
uc = -z;
vc = y;
*index = 0;

}

…

// Convert range from -1 to 1 to 0 to 1
*u = 0.5f * (uc / maxAxis + 1.0f);
*v = 0.5f * (vc / maxAxis + 1.0f);

}

Example

 R= (-4,3,-1)

 Normalize so max value has magnitude of 1

R=(-1, ¾ , - ¼)

 Remap texture coordinates…x,y,z are in [-1,1]

 Need them on [0,1]

 v = ½ + ½ x ¾ = 0.875

 u = ½ + ½ x -¼ = 0.375

 Use face x = -1

 Texture coordinates of (u,v) = (0.375, 0.875)

1

5

WebGL Implementation

 WebGL supports only cube maps

 vec4 texColor = textureCube(mycube, texcoord);

 desktop OpenGL also supports sphere maps

 First must form map

 Use images from a real camera

 Form images with WebGL

 Texture map it to object

Vertex Shader

1

6

varying vec3 R;

attribute vec4 vPosition;

attribute vec4 vNormal;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

void main(){

//…other code

gl_Position = projectionMatrix*ModelViewMatrix*vPosition;

vec4 eyePos = ModelViewMatrix*vPosition;
vec4 N = ModelViewMatrix*vNormal;

R = reflect(eyePos.xyz, N.xyz); }

Fragment Shader

1

7

precision mediump float;

varying vec3 R;

uniform samplerCube texMap;

void main()

{

vec4 texColor = textureCube(texMap, R);

gl_FragColor = texColor;

}

Limitations

 What do you not see here that you should?

1

9

Issues

 Assumes environment is very far from object

 (equivalent to the difference between near and distant lights)

 Object cannot be concave (no self reflections possible)

 No reflections between objects

Refraction

Refraction

Need to Compute Refraction Vector

Snell’s Law

Medium is Important

In GLSL, the refract

function expects the

index of refraction to

be specified as

c1/c2 where:

C1 is the outside

medium

C2 is the inside

medium

So to go from air to

glass you would use

99.97/52.2

Refraction Vertex Shader

T is a varying….

Also eyePos.xyz needs to be the normalized view direction

Refraction Fragment Shader

T is a varying….

RefMap is a uniform

What’s Wrong with this Code?

 From an actual published book…which has some good stuff in it:

