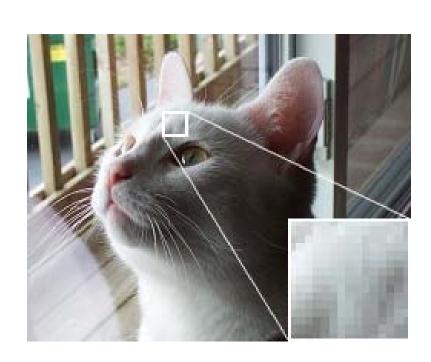
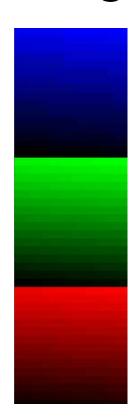
CS 414 – Multimedia Systems Design Lecture 5 – Digital Video Representation

Klara Nahrstedt Spring 2014

Administrative

- MP1 will be out (February 2)
 - Deadline of MP1 is February 19 (Wednesday),5pm
 - You can have 2 bonus day if needed (just keep in mind that you can have totally 3 bonus days for all three MPs)
 - Submit via compass
- MP1 discussion during Lecture on February 7 (Friday)




Today Introduced Concepts

- Digital Image Representation
 - □ Quantization, Color Issues, Image Size
- Video Additional Visual Perception
 Dimensions
 - □ Resolution, Brightness, Temporal Resolution
- Television
 - □ Analog, Digital
 - □NTSC, HDTV, ...

Color Quantization Example of 24 bit RGB Image

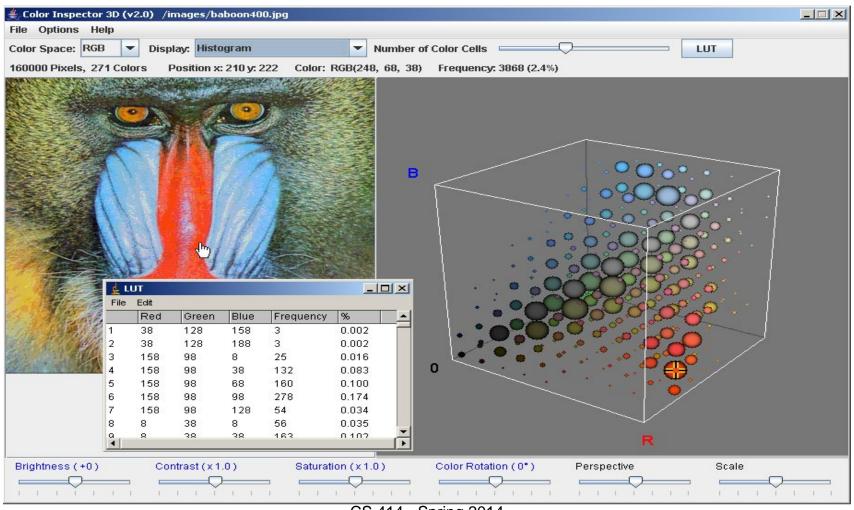
24-bit Color Monitor

м

Image Representation Example

24 bit RGB Representation (uncompressed)

128	135	166	138	190	132
129	255	105	189	167	190
229	213	134	111	138	187


128	138
129	189
229	111

135	190		
255	167		
213	138		

166	132	
105	190	
134	187	

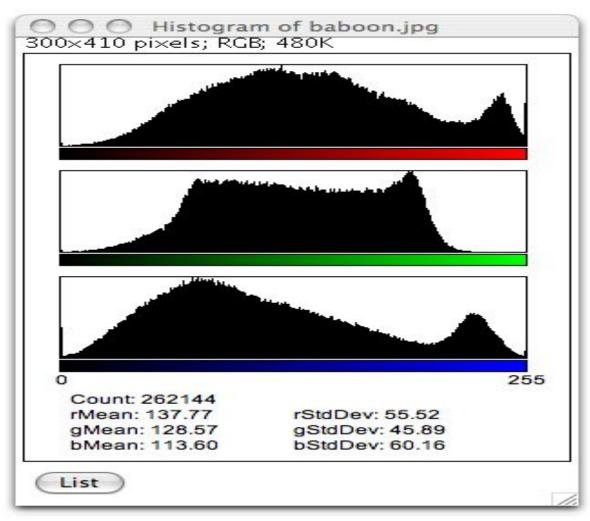
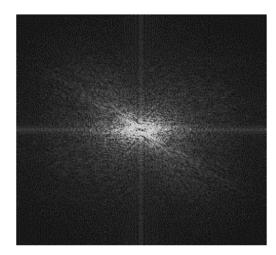

Color Planes

Image Properties (Color)

CS 414 - Spring 2014



- Spatial domain
 - refers to planar region of intensity values at time t
- Frequency domain
 - think of each color plane as a sinusoidal function of changing intensity values
 - refers to organizing pixels according to their changing intensity (frequency)

Image Size (in Bits)

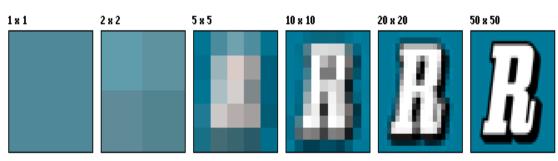
Image Size = Height x Width X Bits/pixel

Example:

- □ Consider image 320x240 pixels with 8 bits per pixel
- ☐ Image takes storage 7680 x 8 bits = 61440 bits or 7680 bytes

What is 2D Video?

■ 300 image frames



Visual Perception: Resolution and Brightness

Visual Resolution

(depends on:)

- ☐ Image size
- □ Viewing distance

Brightness

- Perception of brightness is higher than perception of color
- Different perception of primary colors
 - Relative brightness: green:red:blue= 59%:30%:11%

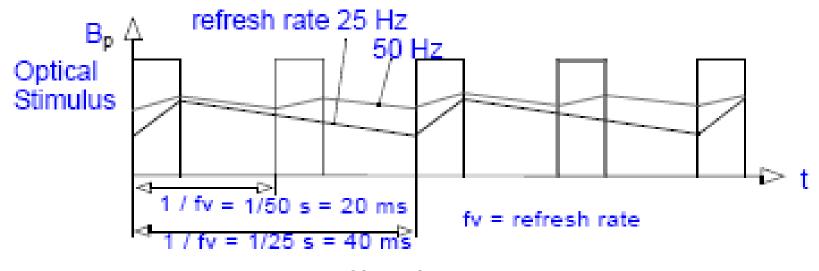
CS 414 - Spring 2014

Source: wikipedia

100 x 100

м

Visual Perception: Resolution and Brightness



CS 414 - Spring 2014

Visual Perception: Temporal Resolution

- Effects caused by inertia of human eye
- Perception of 16 frames/second as continuous sequence
- Special Effect: Flicker

Temporal Resolution

Flicker

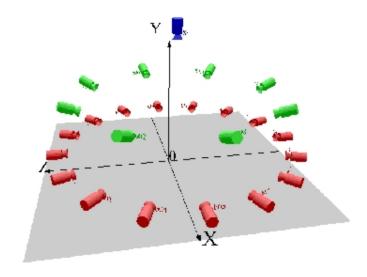
- Perceived if frame rate or refresh rate of screen too low (<50Hz)</p>
- □ Especially in large bright areas

Higher refresh rate requires:

- ☐ Higher scanning frequency
- ☐ Higher bandwidth

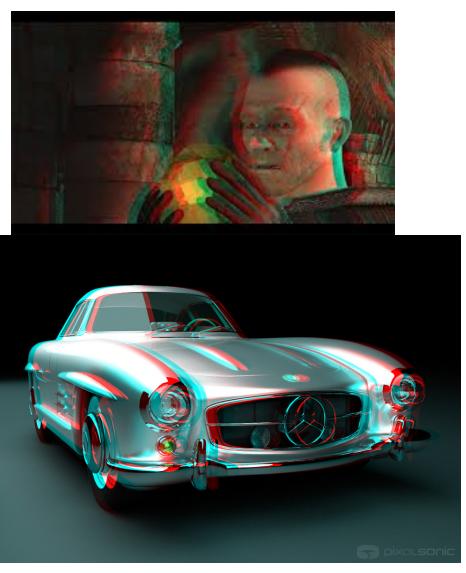
Visual Perception Influence

- Viewing distance
- Display ratio
 - width/height 4/3 for conventional TV
 - □ Width/height 16/9 for HDTV
- Number of details still visible
- Intensity (luminance)



3D Video

Stereo video and Freeviewpoint video



Stereo 3D Image

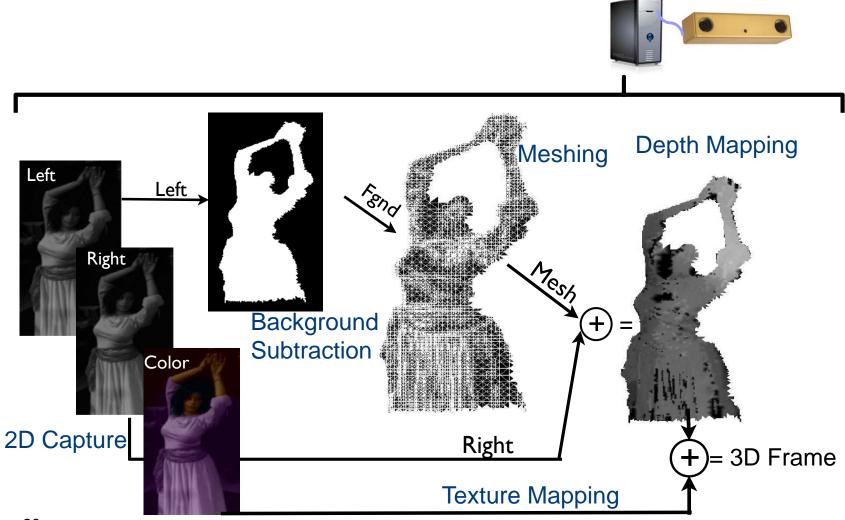
- Most stereoscopic methods present two offset images separately to the left and right eye of the viewer.
- These <u>two-dimensional</u> images are then combined in the brain to give the depth perception
- Visual requirements for 3D video
 - Simultaneous perception
 - □ Fusion (binocular 'single' vision)
 - □ Stereopsis (impression of depth)

3D Image

- Binocular viewing of scene creates
 - □ Two slightly different images of the scene in the two eyes due to the eyes' different positions on the head
 - □ These differences, referred to as binocular disparity, provide information that the brain can use to calculate depth in the visual scene, providing depth perception

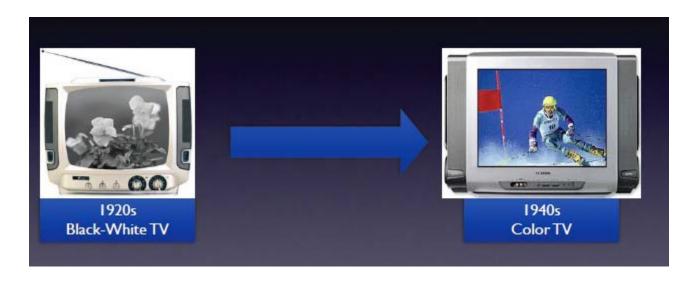
Stereoscopic Image http://www.pixelsonic.com/2011/04/mercedes-300sl-stereoscopic/

3D Image/Video - Depth Perception


Depth perception

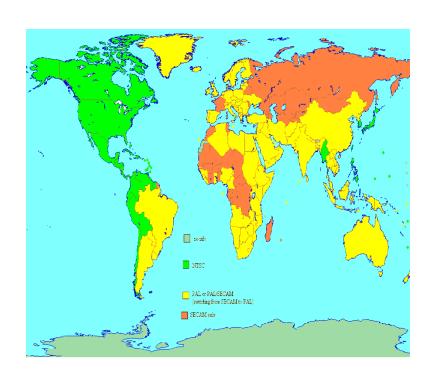
- Visual ability to perceive world in 3D and the distance of an object
- Depth sensation is corresponding term for animals (it is not known whether they perceive depth in the same subjective way that humans do)

Depth cues


- □ Binocular cues that are based on receipt of sensory information in 3D from both eyes
- Monocular cues that can be represented in just 2D and observed (depth) with just one eye.

3D Teleimmersive Video

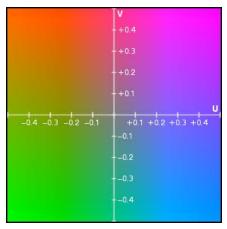
Television History (Analog)



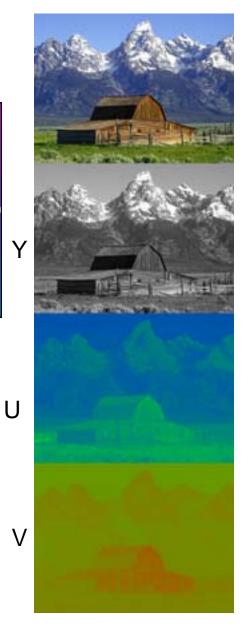
- 1927, Hoover made a speech in Washington while viewers in NY could see, hear him
- AT&T Bell Labs had the first "television"
 - □ 18 fps, 2 x 3 inch screen, 2500 pixels

Analog Television Concepts

- Production (capture)
 - □ 2D
 - □ structured formats
- Representation and Transmission
 - popular formats include NTSC,
 PAL, SECAM
- Re-construction
 - scanning
 - display issues (refresh rates, temporal resolution)
 - relies on principles of human visual system


Color Space: YUV

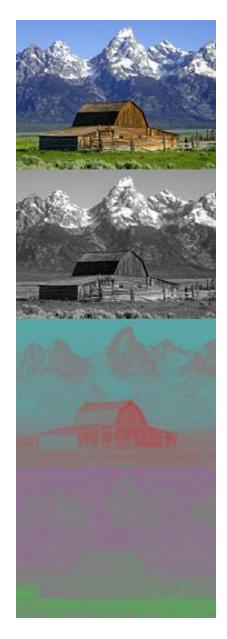
- PAL video standard
 - ☐ Y is luminance
 - □ UV are chrominance
- YUV from RGB

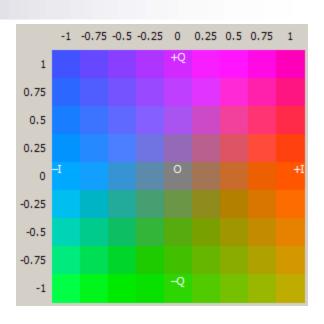

$$Y = .299R + .587G + .114B$$

$$U = 0.492 (B - Y)$$

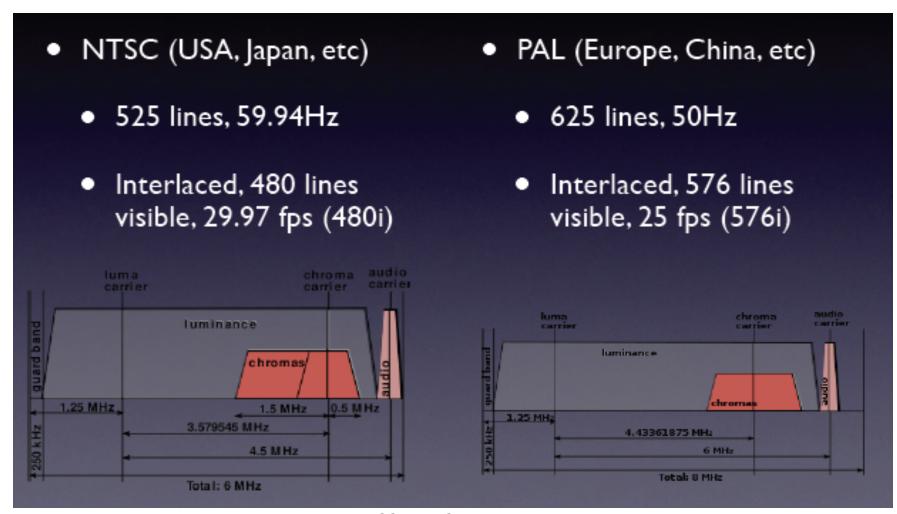
$$V = 0.877 (R - Y)$$

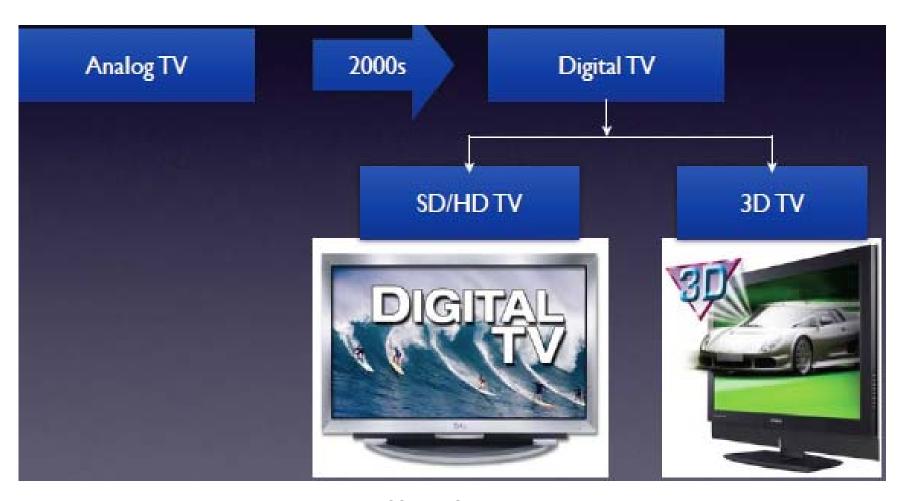
U-V plane at Y=0.5


CS 414 - Spring 2014


Source: wikipedia

YIQ from RGB


Y = .299R + .587G + .114B I = .74 (R - Y) - .27 (B - Y) Q = 0.48 (R - Y) + 0.41 (B - Y)



YIQ with Y=0.5

Video Representations

TV History

CS 414 - Spring 2014

HDTV (Digital)

Resolutions:

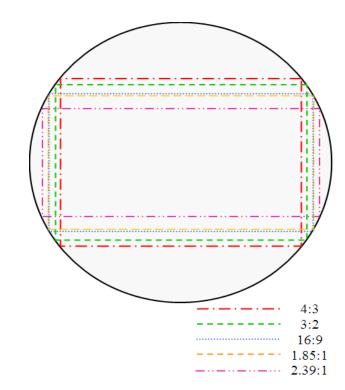
- □ 1920x1080 (1080p) Standard HD (HDTV)
- □2160p, ...
- □ 4096x2304 (4096p) 4K High HD

Frame rate:

- □ HDTV 50 or 60 frames per second
- □ HDTV 120 fps

HDTV

- Interlaced (i) and/or progressive (p) formats
 - Conventional TVs use interlaced formats
 - □ Computer displays (LCDs) use progressive scanning
- MPEG-2 compressed streams
- In Europe (Germany) MPEG-4 compressed streams


Aspect Ratio and Refresh Rate

Aspect ratio

- □ Conventional TV is 4:3 (1.33)
- ☐ HDTV is 16:9 (2.11)
- □ Cinema uses 1.85:1or 2.35:1

Frame Rate

- □ NTSC is 60Hz interlaced (actually 59.94Hz)
- □ PAL/SECAM is 50Hz interlaced
- □ Cinema is 24Hz non-interlaced

2.39:1

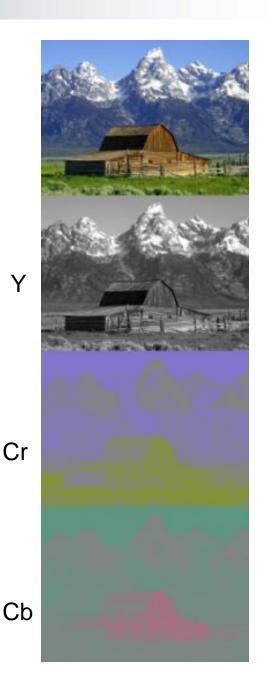
16:9

4:3

1.85:1

3:2

Source: wikipedia


CS 414 - Spring 2014

Resolution

	Broadcast Resolution	Aspect Ratio	Pixel Aspect Ratio	Display Resolution
480i (SD NTSC)	704×480	4:3	10:11	640x480
480i (SD NTSC)	704×480	16:9	40:33	854×480
576i (SD PAL)	704×576	4:3	12:11	768x576
576i (SD PAL)	704×576	16:9	16:11	1024x576
720 _P (HD)	1280×720	16:9	1:1	1280x720
1080p (Full HD)	1920×1080	16:9	I:I	1920×1080

- Bit rate: amount of information stored per unit time (second) of a recording
- Color Coding: YCrCb
 - Subset of YUV that scales and shifts the chrominance values into range 0..1

$$Y = 0.299R + 0.587G + .114B$$

 $Cr = ((B-Y)/2) + 0.5$
 $Cb = ((R-Y)/1.6) + 0.5$

CS 414 - Spring 2014

- Color space compression
 - □ YUV444
 - 24 bits per pixel
 - ☐ YUV422
 - 16 bits/pixel
 - □ YUV411
 - 12 bits/pixel

- DVD video
 - □ Since 1997
 - □ Resolution and frame rate
 - 704x480 at 29.97 fps
 - 704x576 at 25 fps
 - ☐ Bitrate: 9.8 Mbps

- Blu-ray video
 - □ since 2006
 - □ Resolution and frame rate
 - 1920i (@59.94 fps) interlaced
 - 1920p (@24 fps) progressive
 -
 - ☐ Bitrate: 40 Mbps

3DTV

- Refresh rate no less than 120Hz
- Synchronized shutter glasses to enable different views for different eyes

Summary

- Digitization of Video Signals
 - Composite Coding
 - Component Coding
- Digital Television (DTV)
 - DVB (Digital Video Broadcast)
 - Satellite connections, CATV networks best suited for DTV
 - DVB-S for satellites (also DVB-S2)
 - DVB-C for CATV

SMPTE Time Codes

- Society of Motion Picture and Television Engineers defines time codes for video
 - ☐ HH:MM:SS:FF
 - □ 01:12:59:16 represents number of pictures corresponding to 1hour, 12 minutes, 59 seconds, 16 frames
 - If we consider 30 fps, then 59 seconds represent 59*30 frames, 12 minutes represent 12*60*30 frames and 1 hour represents 1*60*60*30 frames.
- For NTSC, SMPTE uses a 30 *drop frame* code
 - □ increment as if using 30 fps, when really NTSC has only 29.97fps
 - defines rules to remove the difference error