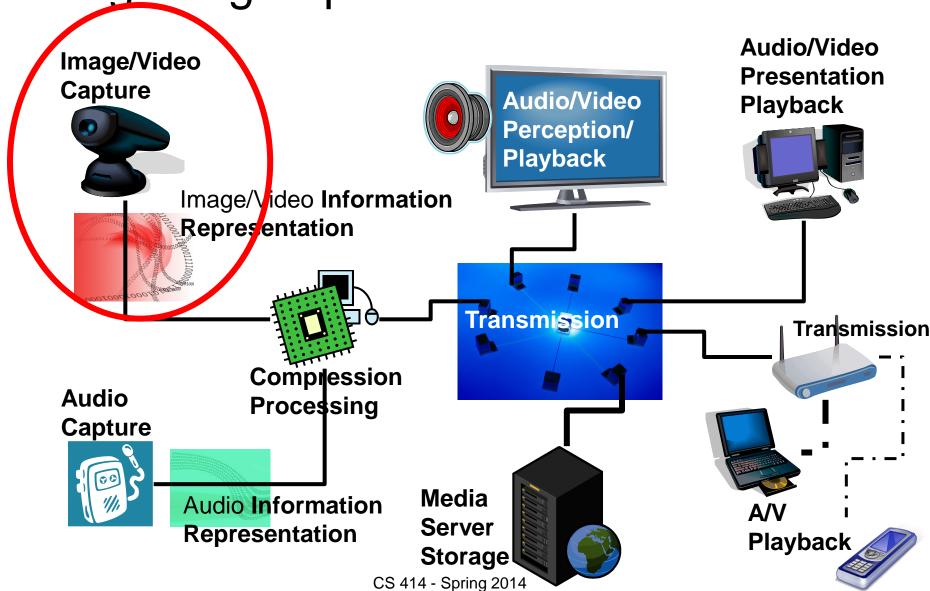
CS 414 – Multimedia Systems Design
Lecture 16 – Introduction to
Multimedia Resource
Management and Quality of
Service

Klara Nahrstedt Spring 2014

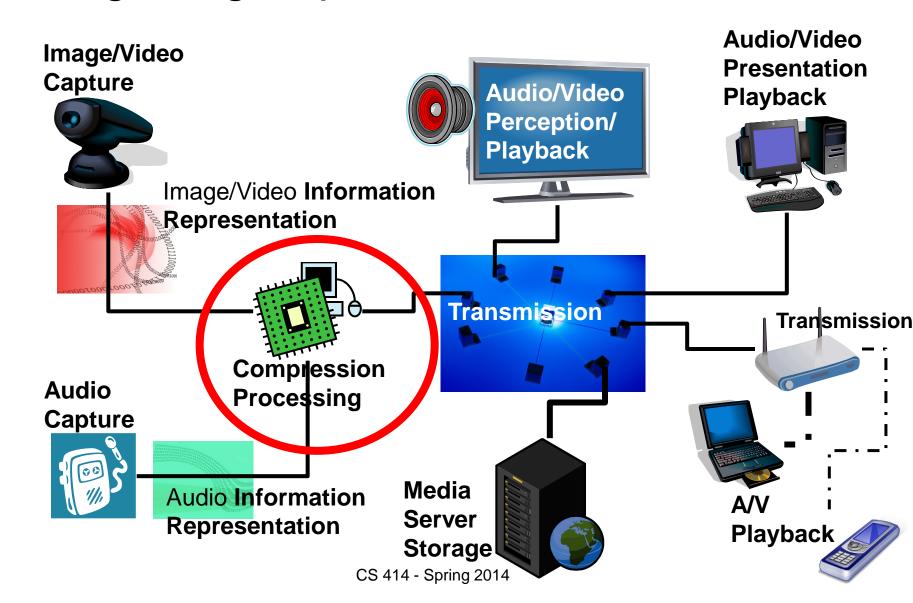
Administrative

- Reading: "Multimedia Systems", Steinmetz and Nahrstedt, Springer 2004, Chapter 2
- Reading: "Multimedia Systems:
 Algorithms, Standards, and Industry
 Practices", Havaldar and Medioni, Chapter
 11
- HW1 posted on Monday, February 24.
 - □ HW1 due on Monday, March 3.

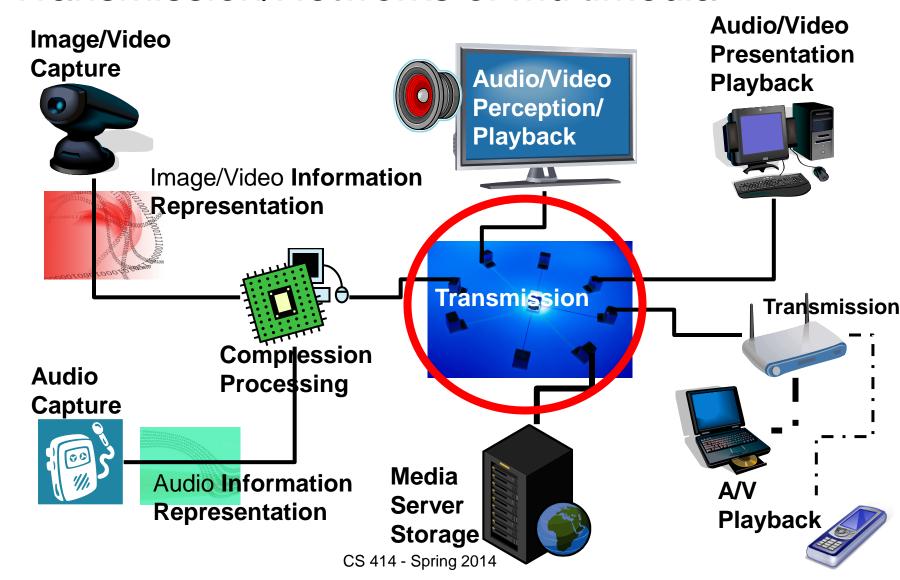
Outline

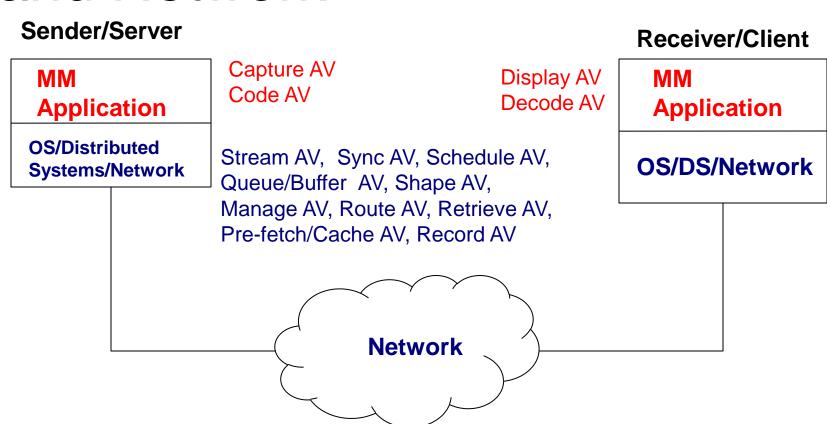

- AV Requirements Real-time
- AV Requirements on Multimedia Networks and Operating Systems
- Resource management
 - □ Resources
 - □ Quality of Service (QoS) Concept
 - Operations

Integrating Aspects of Multimedia



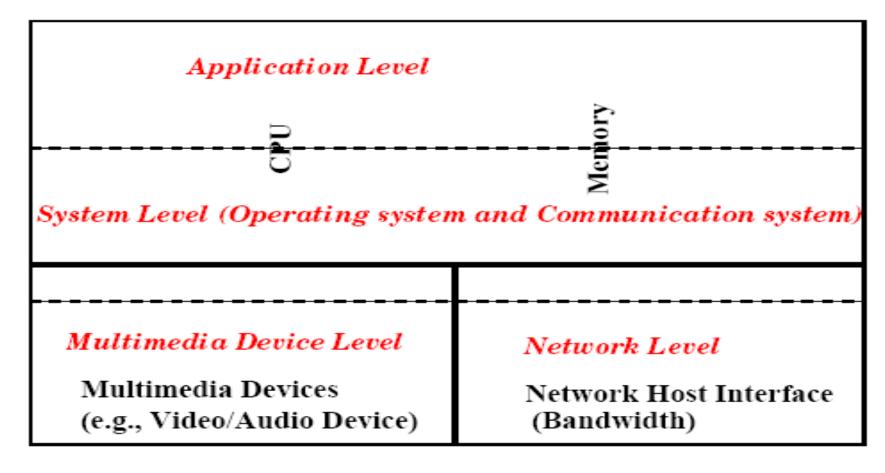
Integrating Aspects of Multimedia




Integrating Aspects of Multimedia

For Next Five Weeks we will cover Transmission/Networks of Multimedia

Multimedia Distributed System and Network


Network Model = OSI (Open System Interconnection) Layering Standard

Physical medium (fiber optics)

Layered Partition of Multimedia Systems with respect to Required Resources and Individual Services

AV Requirements: Real-Time and Deadlines

- Real-time system system in which correctness of computation depends not only on obtaining the right results, but also providing them on time
 - Examples: control of temperature in a chemical plant; control of a flight simulator
- Deadline represents the latest acceptable time for the result delivery
 - Soft deadlines versus hard deadlines

AV Requirements: Real-Time and Multimedia

- Difference between RT requirements for traditional RT systems and Multimedia systems
 - □ Soft deadlines versus hard deadlines
 - □ Periodic behavior versus random behavior
 - Bandwidth requirements

AV Requirements on MM Systems and Networks

- Transport system guaranteed delivery with respect to metrics such as delay, reliability, bandwidth requirements
- OS process management real-time processing of continuous data, communication and synchronization between processes/ threads

AV Requirements on MM Systems and Networks (2)

- Memory/Buffer management guaranteed timing delay and efficient data manipulation
- File system/Media Servers transparent and guaranteed continuous retrieval of audio/video
- Device management integration of audio and video

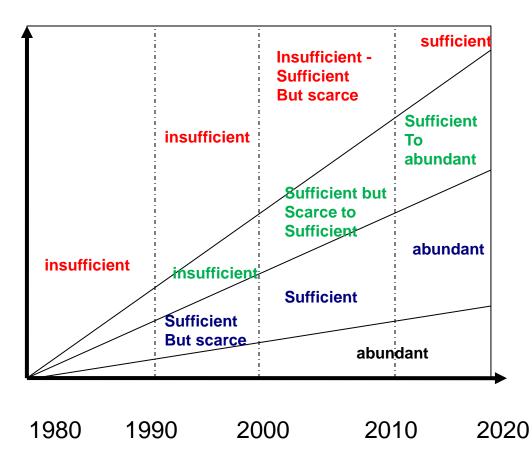
Result of AV Requirements

- Need Resource Management to coordinate
 - □ Transport/Network Resources,
 - □ CPU/OS Resources
 - Memory/Buffer Resources
 - ☐ Storage/Disk Resources
 - Device Resources

Resource Management (Why do we need resource management?)

- Limited capacity in digital distributed systems despite data compression and usage of new technologies
- Need adherence for processing of continuous data by every hardware and software component along the data path
- Competition for resources exist in an integrated multimedia system

Window of Resources


Requirements

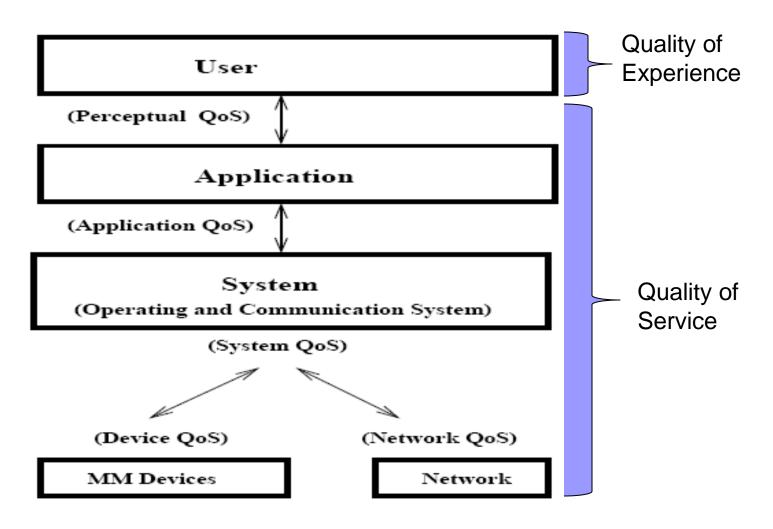
Interactive
HDTV-quality
multi-view video

HDTV

High-quality Audio

Network File access

Hardware support



Quality of Service (How to parameterize services?)

- To manage resources, we need services over resources
 - to schedule AV data, to shape access for AV data, to process AV data, to move AV data, etc.
- Multimedia systems consist of set of AV-specific services
 - □ Processing (media-related) services: retrieve audio/video, record video/audio, compress audio/video, fast forward video, rewind video
 - □ Transport (network) services: Stream video, fast forward video, rewind video
- To provide multimedia services, services get parameterized with quality levels called Quality of Service
- QoS parameters versus performance metrics!!

Layered Model for QoS

м

Application AV QoS Parameters

QoS for Audio service:

- Sample rate 8000 samples/second (8KHz), 44.1 KHz
- Sample resolution 8 bits per sample, 16 bits per sample

QoS for Video service:

- Video frame rate 25 frames per second, 30 frames per second
- Frame Period 40 ms, 30 ms, 25 ms, ...
- Frame resolution 320x240 pixels, 640x480 pixels, 1920x1080 pixels, ...
- Pixel resolution 24 bits per pixel, 8 bits per pixel
- Frame size 64KB
- Compression rate 8:1

- Bandwidth Rate of data transfer, Bit Rate
 - □ e.g., 1 Gbps (Ethernet throughput) level 1
 - □ e.g., 100 Mbps (WiFi throughput) level 2
 - □ e.g., 128 kbps (ISDN throughput) level 3
 - measured in bits per second
- Throughput rate of successful message delivery over communication channel
 - Measured in packets per second, data packets per time slot, or bits per second
 - 30 packets per second; 128 kbps, 10 packets per time slot

Connection setup time

- □ time how long it take to connect the sender and receiver
- □ e.g., 50 ms, 10 ms, ...

Error Rate

- Measures the total number of bits (packets) that were corrupted or incorrectly received compared with the total number of transmitted bits (packets)
 - Bit Error Rate (BER) at physical/MAC layer
 - □ In fiber optics, bit error rate (BER) is of the order of 10-8 to 10-12.
 - □ In satellite networks, BER is of the order 10-7
 - Packet Error Rate (PER) at IP/transport/application layer also called Packet Loss Rate CS 414 - Spring 2014

Delay

- Latency
 - End-to-end delay in telecommunication
- □ Response time
 - Round-trip delay in telecommunication

End-to-End Delay

- \Box time interval from the time packet is sent from the sender until the time it is received at the receiver ($T_{receive} T_{send}$)
- □ e.g., 80 ms, 100 ms, 160 ms

Response Time

- Measured as round-trip delay and is the total time required for sender to send a packet and receive an acknowledgement from the receiver. It can be described as sum of network delay and interface delay.
 - Network delay composed of transit delay and transmission delay
 - Transit delay is caused by time needed to send data on a physical connection between sender and receiver
 - □ Transmission delay is time needed to transmit packet through network as result of processing delays (e.g., look up routing tables)
 - Interface delay incurred between the time a sender is ready to begin sending and the time a network is ready to accept and transmit the data (due to traffic policing and shaping)

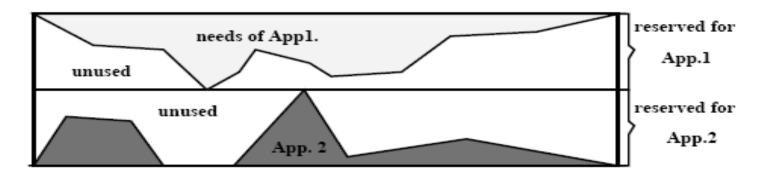
Other QoS Parameters

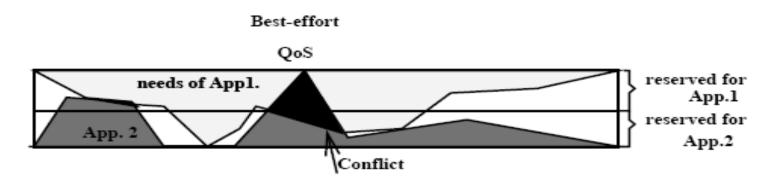
Jitter

- Undesired deviation from true periodicity in telecommunication
 - Also called packet delay variation important QoS factor in assessment of network performance
- □ Packet jitter variation in latency as measured in the variability over time of the packet latency across network.

QoS Classes

- Guaranteed Service Class
 - QoS guarantees are provided based on deterministic and statistical QoS parameters
- Predictive Service Class
 - QoS parameter values are estimated and based on the past behavior of the service
- Best Effort Service Class
 - There are no guarantees or only partial guarantees are provided

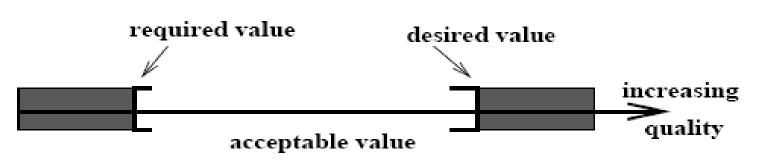

M


QoS Classes (cont.)

QoS Class determines: (a) reliability of offered QoS, (b) utilization of resources

Guaranteed

QoS



м

Deterministic QoS Parameters

- Single Value: QoS_1 average (QoS_{ave}), contractual value, threshold value, target value
 - Throughput 10 Mbps
- Pair Value: <QoS₁, QoS₂> with
 QoS₁ required value; QoS₂ desired value
 <QoS_{avg}, QoS_{peak}>; <QoS_{min}, QoS_{max}>
 - Throughput <8,12> Mbps

100

Deterministic QoS Parameter Values

- Triple of Values <Qo S_1 , Qo S_2 , Qo S_3 >
 - \square QoS₁ best value
 - \square QoS₂ average value
 - \square QoS₃ worst value

Example:

- \square < QoS_{peak} , QoS_{avg} , QoS_{min} >, where QoS is network bandwidth
- □ Throughput <12, 10, 8> Mbps

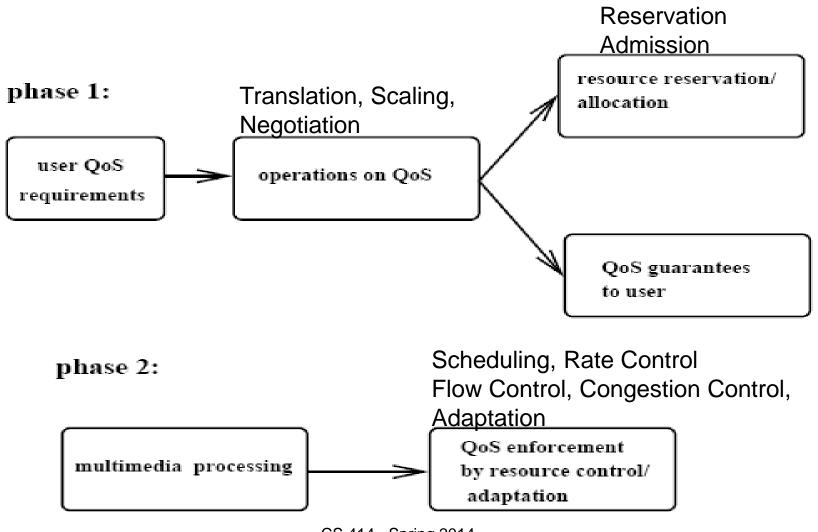
Guaranteed QoS

- We need to provide 100% guarantees for QoS values (hard guarantees) or very close to 100% (soft guarantees)
- Current QoS calculation and resource allocation are based on:
 - Hard upper bounds for imposed workloads
 - Worst case assumptions about system behavior
- Advantages: QoS guarantees are satisfied even in the worst case case (high reliability in guarantees)
- Disadvantage: Over-reservation of resources, hence needless rejection of requests

M

Predictive QoS Parameters

- We utilize QoS values (QoS₁, ..QoSᵢ) and compute average
 - \square QoS_{bound} step at K>i is QoS_K = $1/i*\sum_{j}$ QoS_j
- We utilize QoS values (QoS₁, , QoSᵢ) and compute maximum value
 - $\square \operatorname{QoS}_{K} = \max_{j=1,\dots i} (\operatorname{QoS}_{j})$
- We utilize QoS values (QoS₁, , QoS_i) and compute minimum value
 - $\square QoS_K = min_{j=1,...i} (QoS_j)$



Best Effort QoS

- No QoS bounds or possible very weak QoS bounds
- Advantages: resource capacities can be statistically multiplexed, hence more processing requests can be granted
- Disadvantages: QoS may be temporally violated

Relation between QoS and Resources

Conclusion

- QoS an important concept in multimedia systems
- Very different types of QoS parameters and values
- Important relation between QoS and Resources
- Need to understand operations on QoS and their impact on resource management