CS 414 – Multimedia Systems Design Lecture 14 – H.264, H.265

Klara Nahrstedt Spring 2014

Administrative

- MP1 Demonstrations on February 21, Friday
 - □ Sign up for time slot at Piazza
- Homework 1
 - posted February 24 (Monday)
 - deadline March 1 (Monday)

Outline

- H.26x
- Reading:
 - ☐ Media Coding book, Section 7.7.2 7.7.5
 - □ http://en.wikipedia.org/wiki/H.264

100

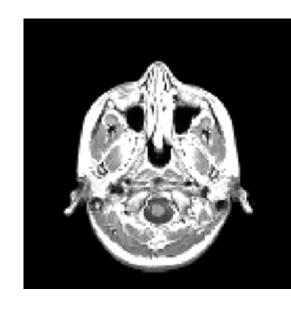
H.261 – Video Coding for Video Conferencing

- H.261 CCITT Recommendation of ITU-T Standard
 - Developed for interactive conferencing applications
 - □ Symmetric coder real-time encoding and decoding
 - □ Rates of p x 64 Kbps for ISDN networks
 - □ Only I and P frames

H.261 Design

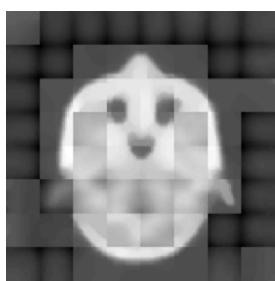
- ITU-T Video Coding Experts Group (VCEG) Standard – 1988
 - ☐ Bit rates between 40 kbps-2 Mbps
 - □ Video frame sizes
 - CIF (352x288 luma, 176x144 chroma)
 - QCIF (176x144 luma, 88x72 croma) using 4:2:0 sampling scheme

10


H.261 Design

- Basic processing unit macroblock
- Macroblock consists of
 - 16x16 luma samples
 - □ two corresponding 8x8 chroma samples,
 - □ 4:2:0 sampling and YCbCr color space
- DCT transform coding is used to reduce spatial redundancy
- Scalar quantization and Zig-zag scanning
- Entropy coding with RLE

Blocking Problem in Compressed Images



How Blocking Effect Happens

- At low bit rates, the quantization step size is large
- Larger step sizes can force many DCT coefficients to zero
- If only DC and few AC coefficients remain, reconstructed picture appears blocky

H.261 Design

- Uses post-processing technique called
 - □ Deblocking filtering (loop filter)
 - ☐ Key element of H.261 (started here)
- Deblocking filtering
 - Reduces appearance of block-shaped artifacts caused by block-based motion compensation and spatial transform parts of design

Deblocking Filter

- Applied for low bit rate video 64kbps and 128 kbps
- Blockiness degradations appear as staircase noise
 - Mosquito noise
- Artifacts are reduced by using deblocking filter
 - low pass filter removing high frequency and block boundary distortions

Deblocking Filter

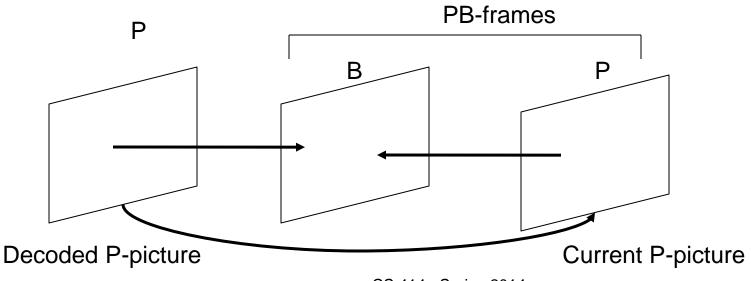
With filter

Without filter http://live.ece.utexas.edu/publications/2011/cy_tip_jan11.pdf

Deblocking filter

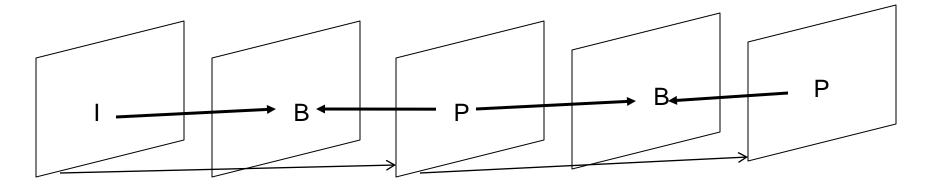
Without filter

With filter


H.263 – video coding for low bit rate communications

- H.263 established 1996
 - □ Used for low bit rate transmission
 - □ Improvements of error correction and performance
 - □ Takes in PB-frames mode
 - □ Temporal, Spatial and SNR scalability

2


H.263 – PB-Frames Mode

- A PB-frames consist of two pictures encoded as one unit.
- PB-frame consists of
 - □ One P-picture which is predicted from last decoded P-picture
 - One B-picture which is predicted from last decoded P-picture and the P-picture currently being decoded.

M

Comment on Temporal Scalability

- Temporal scalability is achieved using B-pictures
- These B pictures differ from B-picture in PB-frames
 - □ they are not syntactically intermixed with subsequent P-picture
- H.263 is used for low frame rate apps (e.g., mobile), hence in base layer there is one B-picture between I and P pictures.

H.264/MPEG-4 AVC Part 10

- Joint effort between
 - □ ITU- Video Coding Experts Group (VCEG) and
 - □ ISO/IEC Moving Picture Experts Group (MPEG)
 - □ 2003 completed
- H.264 codec
 - Standard for Blu-ray Discs
 - Streaming internet standard for videos on YouTube and iTunes Store
 - web software Adobe Flash Player and Microsoft Silverlight support H.264
 - □ Broadcast services direct broadcast satellite television services; cable television services

H.264 Characteristics

- Sampling structure
 - ☐ YCbCr 4:2:2 and YCbCr 4:4:4
- Scalable Video Coding (SVC) allows
 - Construction of bit-streams that contain sub-bitstreams that also conform to standard
 - Temporal bit-stream scalability, spatial and quality bit-stream scalability
 - □ Complete in 2007

Scalable Video Coding

- Encoding of high-quality video stream that contains one or more subset of bitstreams
 - Allows for sending video over lower bandwidth networks
 - Reduced bandwidth requires
 - □ Temporal scalability Lower spatial resolution (smaller screen)
 - Spatial scalability Lower temporal resolution (lower frame rate)
 - SNR/Quality/Fidelity scalability Lower quality video signal
 - Subset bitstream can be derived by dropping packets from larger video

H.264 Characteristics

- Multi-view Video Coding (MVC)
 - Construction of bit-streams that represent more than one video of a video scene
 - Example: stereoscopic (two-view) video
 - Example: free viewpoint television
 - Example: multi-view 3D television
 - □ Two profiles in MVC:
 - Multi-view High Profile (arbitrary number of views);
 - Stereo High Profile (two-view stereoscopic video);
 - □ Complete in 2009

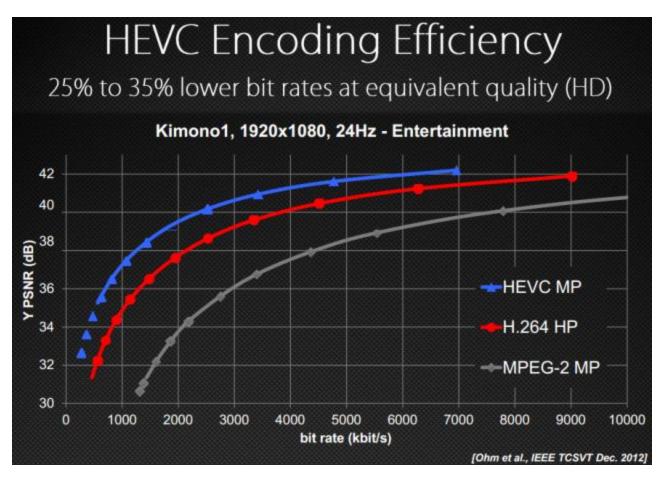
MVC

- Contains large amount of inter-view statistical dependencies
 - Cameras capture same scene from different viewpoints
- Combined temporal and inter-view prediction
 - □ Key for efficient MVC encoding
 - □ Frame from certain camera can be predicted not only from temporally related frames from same camera, but also from neighboring cameras

H.264 Characteristics

- Multi-picture inter-picture prediction
 - □ Use previously-encoded pictures as references in more flexible way than in past standards
 - □ Allow up to 16 reference frames to be used in some cases
 - Contrast to H.263 where typically one or in some cases conventional "B-pictures", two.
 - □ Use variable block size from 16x16 to 4x4
 - □ Use multiple motion vectors per macro-block (one or two per partition where partition can be a block of 4x4)

H.264 Characteristics


- New Transform design features
 - Similar to DCT, but simplified and made to provide exactly-specified decoding
- Quantization
 - Frequency-customized quantization scaling matrices
 - selected by encoder based on perception optimization
- Entropy Encoding
 - Context-adaptive variable-length coding
 - Context-adaptive binary arithmetic coding (CABAC)

H.265/HEVC/MPEG-H Part 2

- Main drivers
 - □ Get Low bitrate target target 2:1 over H.264
 - □ Cheat your eyes how much can you cut bits and still see the same quality
 - Improve resolutions (8K by 4K and 4K by 2K) and frame rates
 - □ Launch 1080p50/60 services to compete against BluRay
 - □ Expect <10x more computational complexity and 2x-3x (decode)

- Under development by ISO MPEG and ITU-T
 - Proposed in January 2013
 - Double the compression rate to H.264

м

Conclusion

- H.264 major leap forward towards scalable coding and multi-view capabilities
 - Some controversy on patent licensing
 - Qualcomm owns patent on adaptive block size image compression and system
 - Qualcomm owns patent on interframe video encoding and decoding system
 - □ Controversies around H.264 stem primarily from its use within HTML5 Internet standard and its use of video and audio.
 - Fight between Theora and H.264 as the Internet video format
- Theora free lossy video compression format
 - Developed by Xiph.Org Foundation
 - Distributed without licensing fees
 - Goes with Vorbis audio format and the Ogg container
 - Comparable in design and bitrate to MPEG-4 Part 2 (early version of Microsoft Media Video and RealVideo)

H.265

- Derived from H.264
 - More modes, tools and more interdependencies
 - More efficient search algorithms
 - More complex intra-prediction
 - Macroblocks vs Partitions

H.265

- AVC
- 16x16 macro-blocks
- 8x8 and 4x4 transform sizes

- HEVC
- Coding unit size64x64 to 8x8
- 32x32, 16x16, 8x8 and 4x4 transformsizes