CS 414 – Multimedia Systems Design Lecture 8 – JPEG Compression (Part 3)

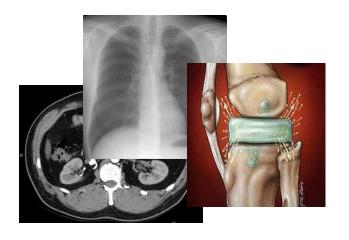
Klara Nahrstedt Spring 2012

100

Administrative

MP1 is posted

Today Covered Topics


- Hybrid Coding:
 - □ JPEG Coding

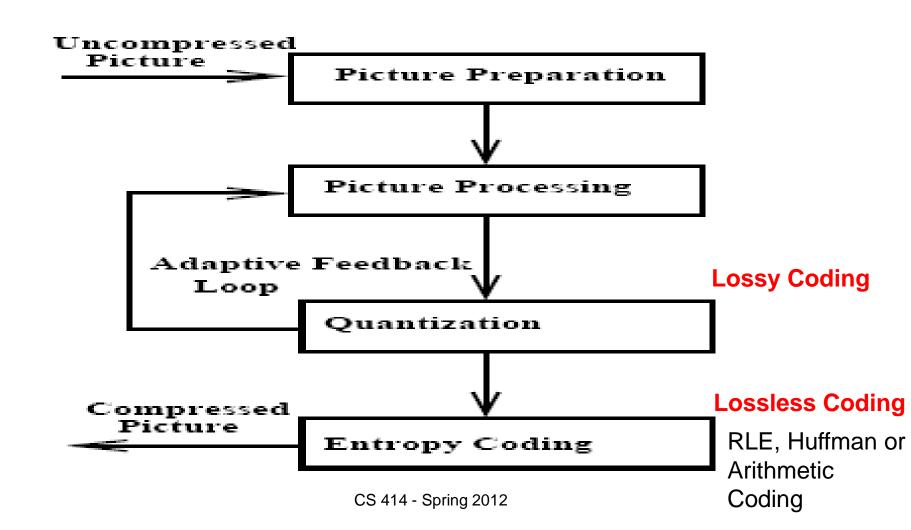
Reading: Section 7.5 out of "Media Coding and Content Processing", Steinmetz & Nahrstedt, Prentice Hall 2002

Ubiquitous use of digital images

Image Compression and Formats

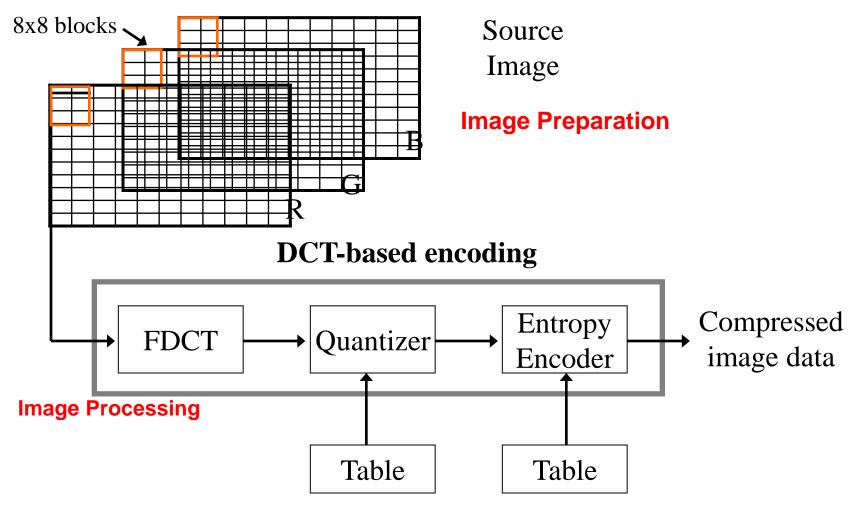
- RLE, Huffman, LZW (Lossless Coding)
- GIF
- JPEG / JPEG-2000 (Hybrid Coding)

Original 60KB



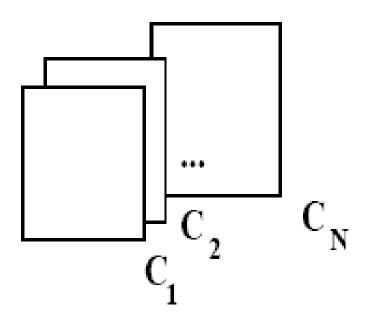
98% less 1KB

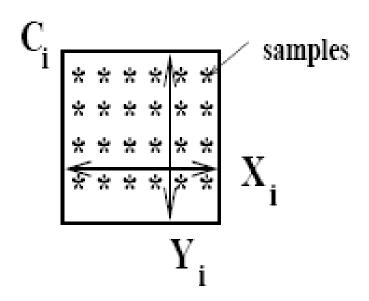
JPEG (Joint Photographic Experts Group)


- Requirements:
 - Very good compression ratio and good quality image
 - □ Independent of image size
 - □ Applicable to any image and pixel aspect ratio
 - Applicable to any complexity (with any statistical characteristics)

JPEG Belong to Hybrid Coding Schemes

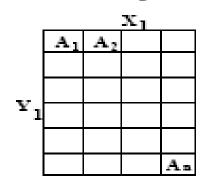
JPEG Compression (Baseline)



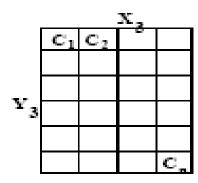

1. Image Preparation

- The image preparation is NOT BASED on
 - □ 9-bit YUV encoding
 - □ Fixed number of lines and columns
 - Mapping of encoded chrominance
- Source image consists of components (C_i) and to each component we assign YUV, RGB or TIQ signals.

Division of Source Image into Planes

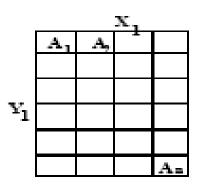


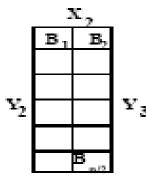


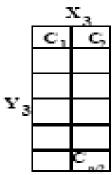


Components and their Resolutions

A./ Components with the same resolution







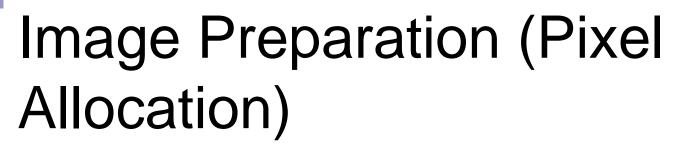
$$\mathbf{X}_1 = \mathbf{X}_2 = \mathbf{X}_3$$
$$\mathbf{Y}_1 = \mathbf{Y}_2 = \mathbf{Y}_3$$

B./ Components with different resolution

$$X_1 = 2X_2 = 2X_3$$

 $Y_1 = Y_2 = Y_3$

A gray scale will have single compone RGB will have 3 equal components YUV color image processing will use:


$$Y_1 = 4Y_2 = 4Y_3$$

 $X_1 = 4X_3 = 4X_3$

Color Transformation (optional)

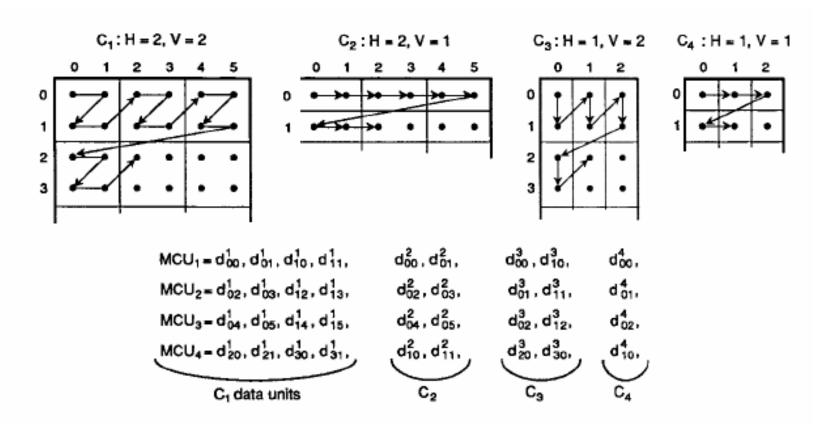
- Down-sample chrominance components
 - compress without loss of quality (color space)
 - □e.g., YUV 4:2:2 or 4:1:1

- Example: 640 x 480 RGB to YUV 4:1:1
 - ☐ Y is 640x480
 - □ U is 160x120
 - □ V is 160x120

- Each pixel is presented by 'p' bits, value is in range of (0,2^p-1)
- All pixels of all components within the same image are coded with the same number of bits
- Lossy modes use precision 8 or 12 bits per pixel
- Lossless mode uses precision 2 up to 12 bits per pixel

Image Preparation - Blocks

- Images are divided into data units, called blocks – definition comes from DCT transformation since DCT operates on blocks
- Lossy mode blocks of 8x8 pixels;
 lossless mode data unit 1 pixel


Data Unit Ordering

Non-interleaved: scan from left to right, top to bottom for each color component

- Interleaved: compute one "unit" from each color component, then repeat
 - □ full color pixels after each step of decoding
 - □ but components may have different resolution

1

Example of Interleaved Ordering

MCU: Minimum Coding Unit

2. Image Processing

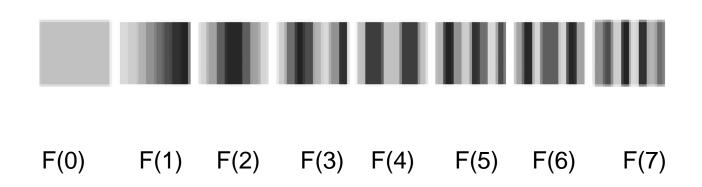
- Shift values [0, 2^P 1] to [-2^{P-1}, 2^{P-1} 1]
 - □ e.g. if (P=8), shift [0, 255] to [-127, 127]
 - □ DCT requires range be centered around 0
- Values in 8x8 pixel blocks are spatial values and there are 64 samples values in each block

Forward DCT

- Convert from spatial to frequency domain
 - convert intensity function into weighted sum of periodic basis (cosine) functions
 - □ identify bands of spectral information that can be thrown away without loss of quality
- Intensity values in each color plane often change slowly

м

1D Forward DCT


- Given a list of n intensity values I(x), where x = 0, ..., n-1
- Compute the *n* DCT coefficients:

$$F(u) = \sqrt{\frac{2}{n}} \quad C(u) \sum_{x=0}^{n-1} I(x) \cos \frac{(2x+1)\mu\pi}{2n}, u = 0...n-1$$

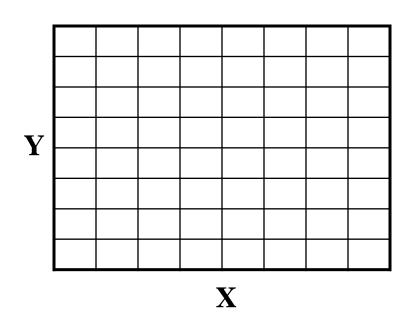
where
$$C(u) = \begin{cases} \frac{1}{\sqrt{2}} & \text{for } u = 0, \\ 1 & \text{otherwise} \end{cases}$$

Visualization of 1D DCT Basic Functions

м

1D Inverse DCT

- Given a list of n DCT coefficients F(u), where u = 0, ..., n-1
- Compute the *n* intensity values:


$$I(x) = \sqrt{\frac{2}{n}} \sum_{u=0}^{n-1} F(u)C(u)\cos\frac{(2x+1)\mu\pi}{2n}, x = 0...n-1$$

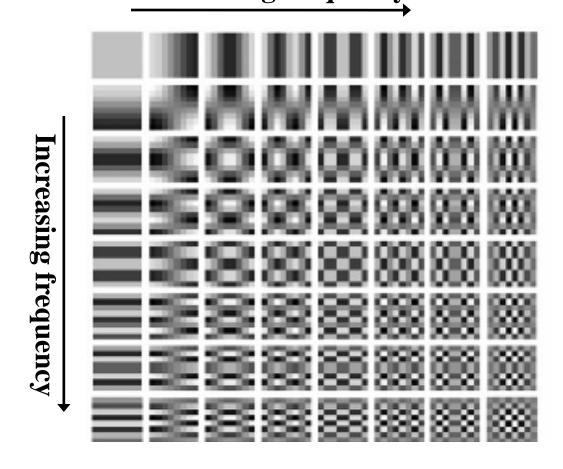
where
$$C(u) = \begin{cases} \frac{1}{\sqrt{2}} & \text{for } u = 0, \\ 1 & \text{otherwise} \end{cases}$$

Extend DCT from 1D to 2D

- Perform 1D DCT on each row of the block
- Again for each column of 1D coefficients
 - □ alternatively, transpose the matrix and perform
 DCT on the rows

1

Equations for 2D DCT


Forward DCT:

$$F(u,v) = \frac{2}{\sqrt{nm}}C(u)C(v)\sum_{y=0}^{m-1}\sum_{x=0}^{n-1}I(x,y)*\cos\left(\frac{(2x+1)u\pi}{2n}\right)*\cos\left(\frac{(2y+1)v\pi}{2m}\right)$$

Inverse DCT:

$$I(y,x) = \frac{2}{\sqrt{nm}} \sum_{v=0}^{m-1} \sum_{u=0}^{n-1} F(v,u)C(u)C(v) \cos\left(\frac{(2x+1)u\pi}{2n}\right) * \cos\left(\frac{(2y+1)v\pi}{2m}\right)$$

м

Coefficient Differentiation

- F(0,0)
 - includes the lowest frequency in both directions
 - □ is called DC coefficient
 - □ Determines fundamental color of the block
- F(0,1) F(7,7)
 - □ are called **AC** coefficients
 - Their frequency is non-zero in one or both directions

м

3. Quantization

- Throw out bits
- Consider example: $101101_2 = 45$ (6 bits)
 - \square We can truncate this string to 4 bits: $1011_2 = 11$
 - □ We can truncate this string to 3 bits: $101_2 = 5$ (original value 40) or $110_2 = 6$ (original value 48)
- Uniform quantization is achieved by dividing DCT coefficients by N and round the result (e.g., above we used N=4 or N=8)
- In JPEG use quantization tables
 - \square Fq(u,v) = F(u,v)/Q_{uv}
 - □ Two quantization tables one for luminance and one for two chrominance components

De facto Quantization Table

Eye becomes less sensitive

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Eye becomes less sensitive

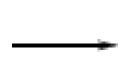
4. Entropy Encoding

- Compress sequence of quantized DC and AC coefficients from quantization step
 - ☐ further increase compression, without loss

- Separate DC from AC components
 - DC components change slowly, thus will be encoded using difference encoding

DC Encoding

- DC represents average intensity of a block
 - □ encode using difference encoding scheme
- Because difference tends to be near zero, can use less bits in the encoding
 - □ categorize difference into difference classes
 - send the index of the difference class, followed by bits representing the difference



Difference Coding applied to DC Coefficients

PREDICTOR

$$\mathbf{Diff}_{i} = \mathbf{DC}_{i} - \mathbf{DC}_{i+1}$$

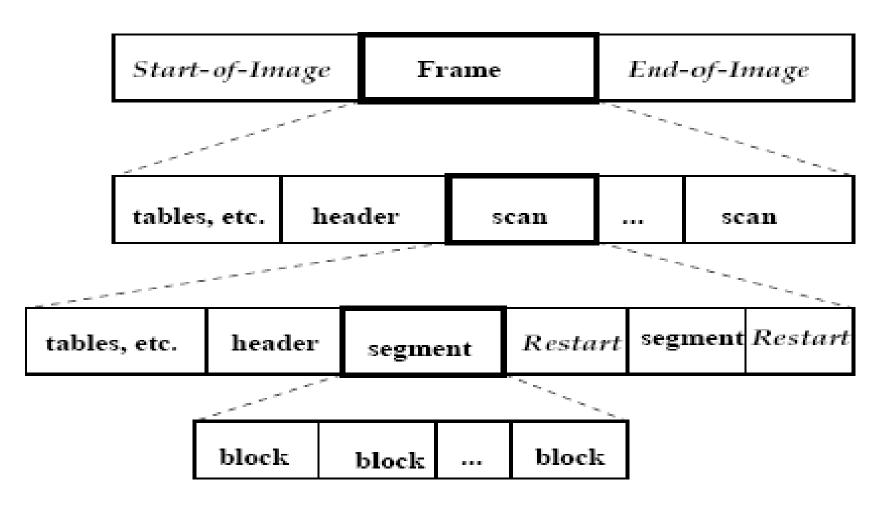
DC °	DC	DC ₂
DC ₃	DC 4	DC ₅
DC	DC ₇	DC _s



DC .	Diff	Diff ₂
Diff ₃	Diff ₄	Diff
Diff 6	Diff ₇	Diff

AC Encoding

- Use zig-zag ordering of coefficients
 - orders frequency components from low->high
 - produce maximal series of 0s at the end
 - Ordering helps to apply efficiently entropy encoding
- Apply Huffman coding
- Apply RLE on AC zero values


Huffman Encoding

 Sequence of DC difference indices and values along with RLE of AC coefficients

- Apply Huffman encoding to sequence
- Attach appropriate headers
- Finally have the JPEG image!

Interchange Format of JPEG

2.76M

Discussion

What types of image content would JPEG work best (worst) for?

Is image compression solved?

What's missing from JPEG?