CS 414 – Multimedia Systems Design Lecture 6 – Basics of Compression (Part 1)

Klara Nahrstedt Spring 2009

Administrative

- MP1 is posted
- Discussion meeting today Monday, February 2, at 7pm, 3401 SC.

Need for Compression

- Uncompressed audio
- 8 KHz, 8 bit
 - 8K per second
 - □ 30M per hour
- 44.1 KHz, 16 bit
 - □ 88.2K per second
 - □ 317.5M per hour
- 100 Gbyte disk holds 315 hours of CD quality music

- Uncompressed video
- 640 x 480 resolution, 8 bit color, 24 fps
 - □ 7.37 Mbytes per second
 - ☐ 26.5 Gbytes per hour
- 640 x 480 resolution, 24 bit
 (3 bytes) color, 30 fps
 - □ 27.6 Mbytes per second
 - 99.5 Gbytes per hour
- 100 Gbyte disk holds 1 hour of high quality video

Broad Classification

- Entropy Coding (statistical)
 - □ lossless; independent of data characteristics
 - □ e.g. RLE, Huffman, LZW, Arithmetic coding
- Source Coding
 - □ lossy; may consider semantics of the data
 - □ depends on characteristics of the data
 - □ e.g. DCT, DPCM, ADPCM, color model transform
- Hybrid Coding (used by most multimedia systems)
 - combine entropy with source encoding
 - □ e.g., JPEG-2000, H.264, MPEG-2, MPEG-4, MPEG-7

Data Compression

- Branch of information theory
 - minimize amount of information to be transmitted
- Transform a sequence of characters into a new string of bits
 - □ same information content
 - □ length as short as possible

м

Concepts

- Coding (the code) maps source messages from alphabet (A) into code words (B)
- Source message (symbol) is basic unit into which a string is partitioned
 - □ can be a single letter or a string of letters
- EXAMPLE: aa bbb cccc ddddd eeeeee ffffffgggggggg
 - $\square A = \{a, b, c, d, e, f, g, space\}$
 - $\Box B = \{0, 1\}$

Taxonomy of Codes

- Block-block
 - source msgs and code words of fixed length; e.g.,
 ASCII
- Block-variable
 - □ source message fixed, code words variable; e.g.,
 Huffman coding
- Variable-block
 - □ source variable, code word fixed; e.g., RLE, LZW
- Variable-variable
 - □ source variable, code words variable; e.g., Arithmetic

Example of Block-Block

- Coding "aa bbb cccc ddddd eeeeee fffffffggggggggg"
- Requires 120 bits

Symbol	Code word
а	000
b	001
С	010
d	011
е	100
f	101
g	110
space	111

Example of Variable-Variable

- Coding "aa bbb cccc ddddd eeeeee fffffffggggggggg"
- Requires 30 bits
 - □ don't forget the spaces

Symbol	Code word
aa	0
bbb	1
сссс	10
ddddd	11
eeeeee	100
fffffff	101
99999999	110
space	111

Concepts (cont.)

- A code is
 - distinct if each code word can be distinguished from every other (mapping is one-to-one)
 - □ *uniquely decodable* if every code word is identifiable when immersed in a sequence of code words
 - e.g., with previous table, message 11 could be defined as either ddddd or bbbbbb

Static Codes

- Mapping is fixed before transmission
 - message represented by same codeword every time it appears in message (ensemble)
 - □ Huffman coding is an example

- Better for independent sequences
 - probabilities of symbol occurrences must be known in advance;

Dynamic Codes

- Mapping changes over time
 - □ also referred to as adaptive coding
- Attempts to exploit locality of reference
 - periodic, frequent occurrences of messages
 - dynamic Huffman is an example
- Hybrids?
 - □ build set of codes, select based on input

Traditional Evaluation Criteria

- Algorithm complexity
 - □ running time

- Amount of compression
 - □ redundancy
 - □ compression ratio

■ How to measure?

Measure of Information

- Consider symbols s_i and the probability of occurrence of each symbol $p(s_i)$
- In case of fixed-length coding, smallest number of bits per symbol needed is
 - □ $L \ge log_2(N)$ bits per symbol
 - □ Example: Message with 5 symbols need 3 bits $(L \ge log_2 5)$

Variable-Length Coding-Entropy

- What is the minimum number of bits per symbol?
- Answer: Shannon's result theoretical minimum average number of bits per code work is known as Entropy (H)

$$\sum_{i=1}^n -p(s_i)\log_2 p(s_i)$$

M

Entropy Example

- Alphabet = {A, B}
 - \Box p(A) = 0.4; p(B) = 0.6

- Compute Entropy (H)
 - \Box -0.4*log₂ 0.4 + -0.6*log₂ 0.6 = .97 bits

м

Compression Ratio

- Compare the average message length and the average codeword length
 - □ e.g., average L(message) / average L(codeword)

Example:

- □ {aa, bbb, cccc, ddddd, eeeeee, fffffff, gggggggg}
- □ Average message length is 5
- □ If we use code-words from slide 9, then
 - We have {0,1,10,11,100,101,110}
 - Average codeword length is 2.14.. Bits
- \square Compression ratio: 5/2.14 = 2.336

Symmetry

- Symmetric compression
 - requires same time for encoding and decoding
 - □ used for live mode applications (teleconference)
- Asymmetric compression
 - performed once when enough time is available
 - □ decompression performed frequently, must be fast
 - used for retrieval mode applications (e.g., an interactive CD-ROM)

Entropy Coding Algorithms (Content Dependent Coding)

- Run-length Encoding (RLE)
 - Replaces sequence of the same consecutive bytes with number of occurrences
 - Number of occurrences is indicated by a special flag (e.g., !)
 - □ Example:
 - abcccccccdeffffggg (20 Bytes)
 - abc!9def!4ggg (13 bytes)

10

Variations of RLE (Zerosuppression technique)

- Assumes that only one symbol appears often (blank)
- Replace blank sequence by M-byte and a byte with number of blanks in sequence
 - □ Example: M3, M4, M14,...
- Some other definitions are possible
 - □ Example:
 - M4 = 8 blanks, M5 = 16 blanks, M4M5=24 blanks

Huffman Encoding

- Statistical encoding
- To determine Huffman code, it is useful to construct a binary tree
- Leaves are characters to be encoded
- Nodes carry occurrence probabilities of the characters belonging to the subtree
- Example: How does a Huffman code look like for symbols with statistical symbol occurrence probabilities:

$$P(A) = 8/20, P(B) = 3/20, P(C) = 7/20, P(D) = 2/20?$$

Huffman Encoding (Example)

Step 1 : Sort all Symbols according to their probabilities (left to right) from Smallest to largest

these are the leaves of the Huffman tree

$$P(B) = 0.51$$

$$P(C) = 0.09$$

$$P(E) = 0.11$$

$$P(D) = 0.13$$

$$P(A)=0.16$$

м

Huffman Encoding (Example)

Policy: always connect two smaller nodes together (e.g., P(CE) and P(DA) had both Probabilities that were smaller than P(B), Hence those two did connect first

P(B) = 0.51P(CEDA) = 0.49P(DA) = 0.29P(D) = 0.13P(A)=0.16

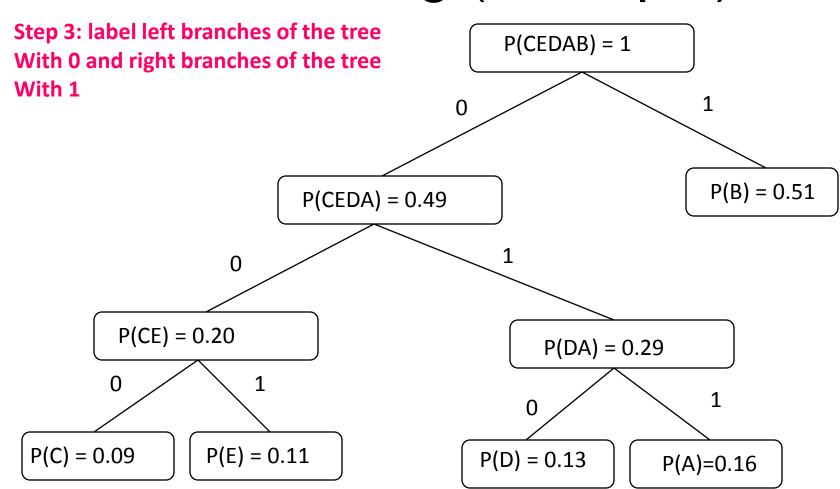
P(CEDAB) = 1

P(C) = 0.09 P(E) = 0.11

P(CE) = 0.20

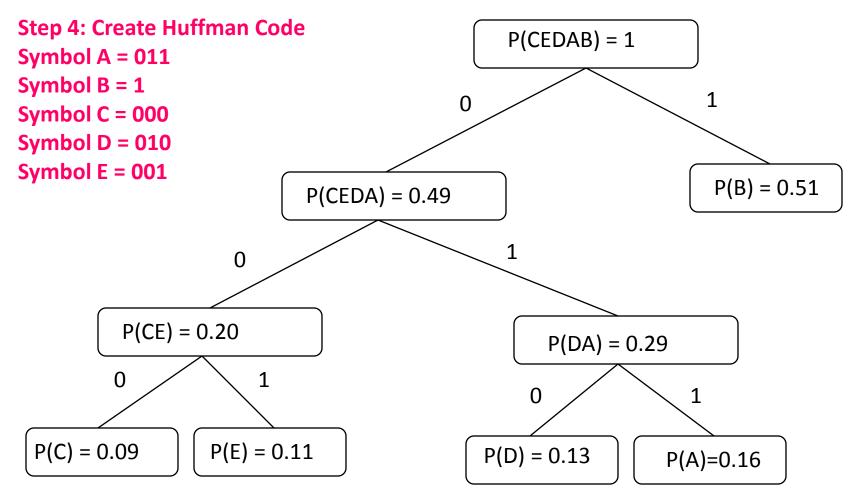
М

Huffman Encoding (Example)



М

Huffman Encoding (Example)



Summary

- Compression algorithms are of great importance when processing and transmitting
 - □ Audio
 - □ Images
 - □Video