### CS 414 – Multimedia Systems Design Lecture 39 – Hot Topics in Multimedia

Klara Nahrstedt Spring 2009



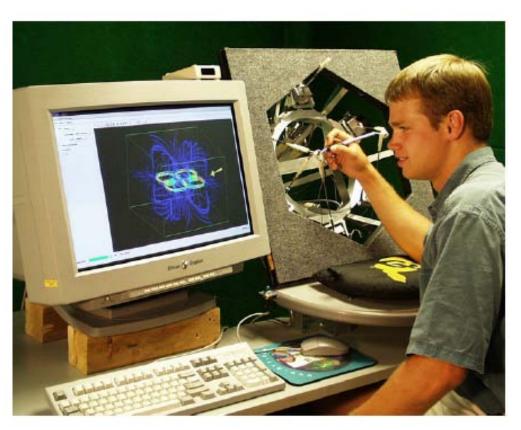
### Announcements

- Homework 2 due Wednesday, midnight, May 6<sup>th</sup>
- Final exam on Tuesday, May 12, 7-10pm, 1109 SC
- Don't forget Peer Evaluations!! (by Friday, May 8 email to klara@illinois.edu)



# Haptics – Important Part of Multimedia

- Haptics sense of touch
- Haptics technology technology that interfaces with the user through the sense of touch
- Haptic perception process of recognizing objects through touch

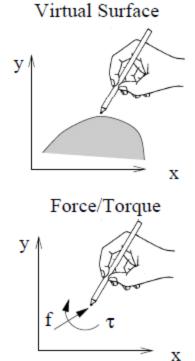



## **Haptic Devices**

- Pen-like devices
- Mobile devices with haptic feedback
- Wii device for view control

# Haptic Interface Hardware – parallel haptic interface






University of Colorado research



### Issues

- Challenges
  - Mechanics and control design
- Ideal interface has
  - □ large range of motion,
  - multiple degrees of freedom (DOF) and
  - high fidelitytransmission of forcesto the user's fingers



y X

Mechanical Impedance

y K

B

Virtual Constraint



### Issues

- To avoid corrupting rendered data by artifacts from the interface itself
  - 60 Hz bandwidth force control look is used to provide accurate tracking of force commands in 5 DOF
  - Suppression of forces due to friction and other mechanics dynamics

### 100

# Mobile Devices with Haptic Feedback

- iPhone haptics
- Haptic feedback presented via touchscreen by applying forces, vibrations or motion to user's fingertips
- Haptic Keyboard
  - □ U. Glasgow research







# Haptic Keyboard (U. Glasgow)

- One of the key features lost in touch-screen interaction is ability to feel buttons
  - No natural haptic response which occurs when button is touched
- Haptic feedback added to figure down and up events

- iPhone's built-in vibrotactile actuator
  - Turned on when keyboard buttons are pressed
  - Vibrates at 12 different speeds offering wide range of tactile sensations



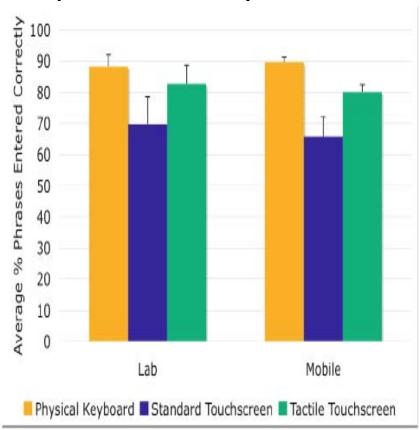


## Haptic Keyboard (U. Glasgow)

 Key feature lost in a touchscreen keyboard is the ability to feel edges of keys

#### Solution:

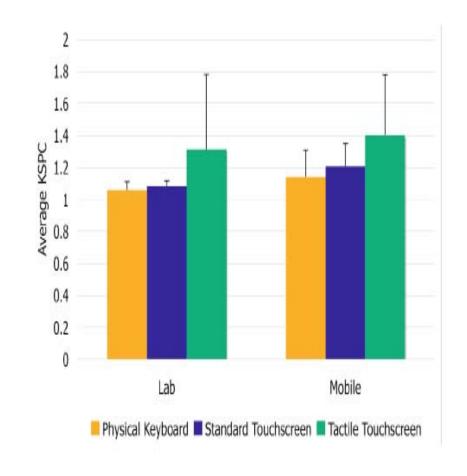
 Created tactile equivalent to this so that users can feel around display and know when they were on key or moving between one key and the next


- Solution: Event is triggered whenever the fingertip moved over the edge of any button on the screen, indicating a transition or slip from one to the next
  - fingertip slips can be troublesome for users and can cause errors that are often undetected

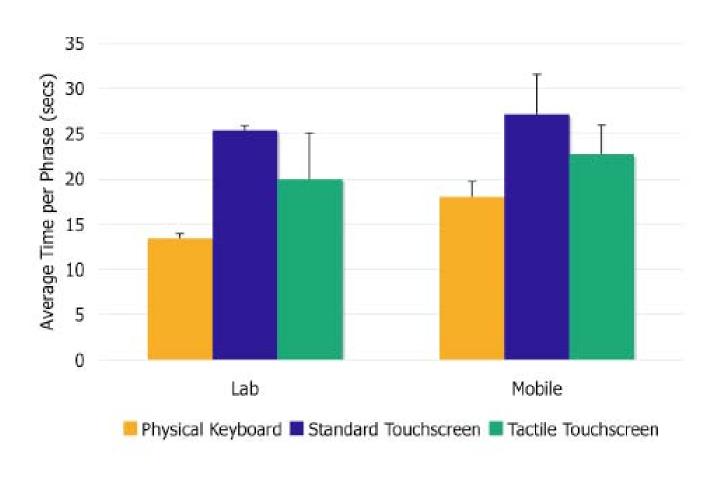


#### Lab and Mobile study

- 12 participants; students of U. Glasgow
- Participants memorized a phrase and type it in using keyboard for each condition





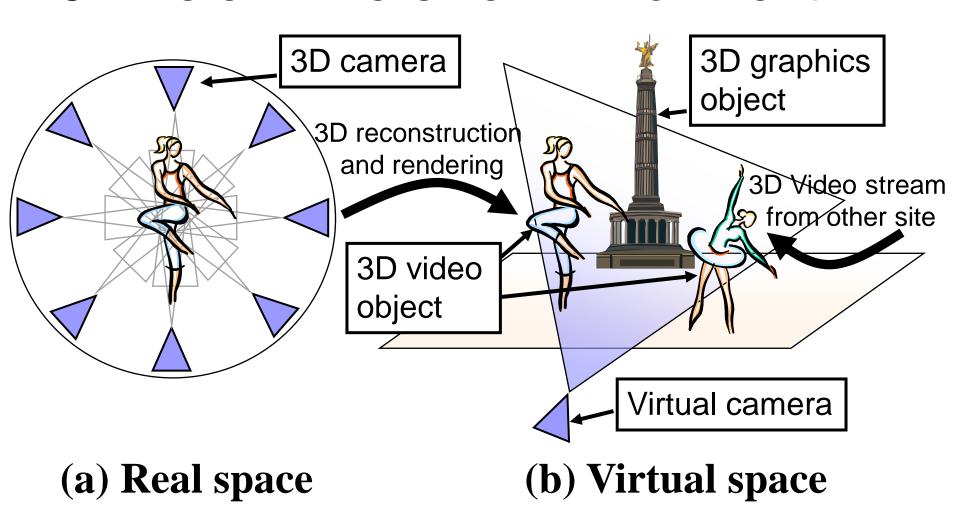

### KSPC – Keystroke per character (сні 2008)

- Recorded for each keyboard type
- Accuracy scores were based on whether or not submitted phrase matched given phrase exactly and did not include corrections as errors and KSPC was recorded



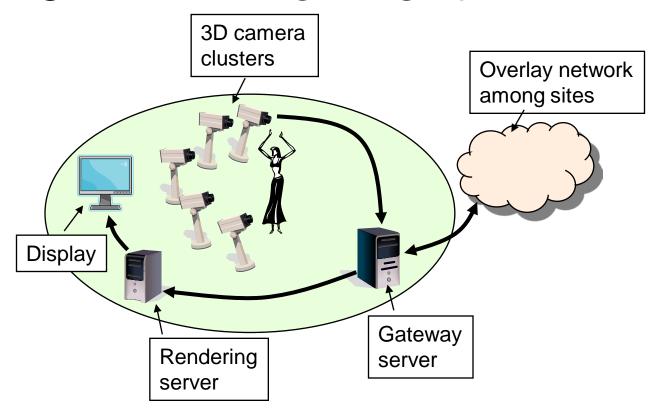







## Wii Haptic Device

- Usage in 3D Immersive Environments
- Usage as an interface to control multiple views
- University of Illinois Urbana-Champaign research
  - □ Published in IEEE ICME 2008


### 100

#### 3D Tele-immersive Environment



## М

#### Local 3DTI Environment



#### A site produces multiple 3D video streams

- Each 3D video stream is captured from one view direction of a 3D camera
- 3D video streams are exchanged and aggregated through the overlay network among sites

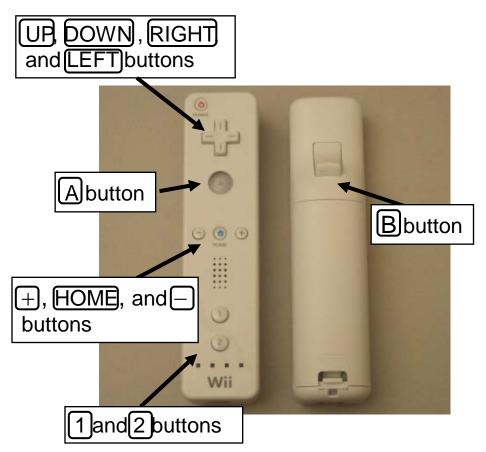


### Requirements

#### Needs for user interface

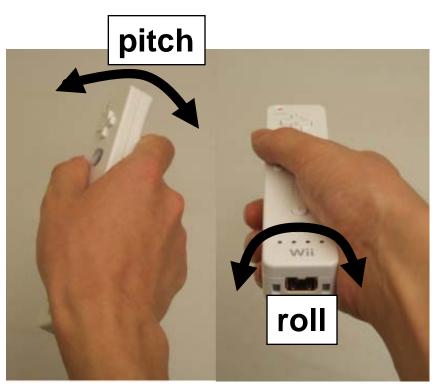
- Users want to change their view direction
- Users want to rearrange the positions of 3D objects, and look at 3D objects from different view directions

#### Requirements for user interface


- Doesn't hinder user's activity
- Not to be difficult to use: intuitive to use



#### Related Work


- Wired mouse
  - □ This severely restricts user's activity
- Wireless mouse / Wireless laser pointer [4]
  - □ These are pointing-based interfaces, and difficult to operate correctly during activities involving body movement
  - □ These are mainly focused on 2D environments, so it is difficult to map 3D operations on it
- Head tracking [5,6] / Motion capture device [7,8]
  - □ These are sensitive to tracking error and need calibration [9]
  - ☐ The users need to wear a special tracking device

### Wii Remote Interface



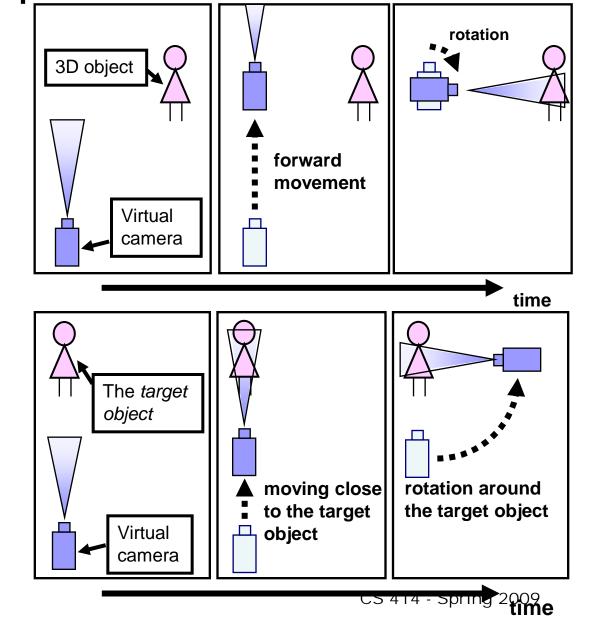
#### (a) Buttons:

Allows the user to control view correctly during activities involving body movement



#### (b) Motions:

Allows the user to change his/her view more intuitively using hand movement


CS 414 - Spring 2009

View Control Operations

(a) First-person view control method
Allows user to work around the virtual space

(b) Target-centered view control method

Allows user to look at a specific target object from different angles



# Mapping Between Buttons/Motions and View Control Operations

- Camera Mode: control the virtual camera
- Object Mode: control the 3D objects

| <b>Button or Motion</b> | Camera Mode                   | Object Mode       |  |
|-------------------------|-------------------------------|-------------------|--|
| Up / Down               | F/B movement                  | F/B movement      |  |
| Left / Right            | L/R rotation                  | L/R movement      |  |
| + / -                   | Next/Prev object              | Next/Prev object  |  |
| Pitch motion            | Moving close/away             | N/A               |  |
| Roll motion             | Rotation around target object | Rotation          |  |
| Α                       | SW to object mode             | SW to camera mode |  |

## **User Study**

- Application: dancing in the virtual space
- Participants: a professional dancer and five students
- Purpose: understand the usability of our interface in comparison with mouse
- Tasks:
  - Task 1: Co-located teaching of a dancing pose
  - •Task2: Remote teaching
  - Task 3: Improvisation dance
- Ranking questions (1: low, 5: high):
  - •Ease of use: Does the interface make it easier for the user to control objects/virtual camera?
  - <u>Efficiency</u>: How quickly can user control objects/virtual camera?
  - Effectiveness: How effectively can user control objects/virtual camera?
  - •Overall accuracy of the task: How accurate was the information delivery for each task?
  - Creativity: How does the interface support creativity in body movement?



### Results

|               | Task1       | Task2       | Task3       |
|---------------|-------------|-------------|-------------|
|               | (Mouse/Wii) | (Mouse/Wii) | (Mouse/Wii) |
| Ease of use   | 3/5         | 4/5         | 3/5         |
| Efficiency    | 4/5         | 4/5         | 3/5         |
| Effectiveness | 3/5         | 2/5         | 3 / 4       |
| Accuracy      | 4/4         | 2/4         | N/A         |
| Creativity    | N/A         | N/A         | 1/5         |

- Our interface is ranked much higher than mouse for almost all questions
- Creativity is ranked significantly higher



### Dancer's Comments

- Wii interface establishes direct connection between view control functionality and body movement. This encourages the user to manipulate the 3D objects and the virtual camera more naturally when doing a particular task
- Wii interface is useful for choreography design, because it creates another dimension/element (i.e., view angle) in the design process



### Conclusion

- Different types of haptic devices/actuators are coming
  - □ Pen interfaces are becoming common
  - Haptic interfaces on cell-phones are comming
  - □ View control interface for 3DTI environments using Wii Remote
    - allows user to control view intuitively with buttons and through motions
    - shows that our interface is preferred by most of the participants, because it is much easier and more natural to use
      CS 414 - Spring 2009