CS 414 – Multimedia Systems Design Lecture 33 – Synchronization (Part 1)

Klara Nahrstedt Spring 2009

Administrative

- MP4 posted
 - □ April 30 (preview for finalists) 5-7pm
 - May 1 grading for non-finalists 3:30-5pm and competition for finalists 5-7pm
- Peer Evaluation
 - □ Deadline May 6, 5pm very important 5% of your grade
 - Website will have all the instructions about the peerevaluation (see also the first lecture of the semester that discussed peer evaluation)

Outline

- Synchronization Concept
- Synchronization Classification
- Logical Data Units
- Live vs Synthetic Synchronization
- Synchronization Requirements

Notion of Synchronization

- Sync in correspondence to
 - □ Content relation
 - □ Spatial relation
 - □ Temporal relation

Content Relation

- Define dependency of media objects for some data
- □ Example: dependency between spreadsheet and graphics that represent data listed in spreadsheet

Spatial Relation

Layout relation

- □ Defines space used for presentation of media object on output device at certain point of multimedia presentation
- Example: desktop publishing

Layout frames

- □ Placed on output device and content assigned to frame
- □ Positioning of layout frames:
 - Fixed to position of document
 - Fixed to position on page
 - Relative to position of other frame
- Example: in window-based system, layout frames correspond to windows and video can be positioned in window

Temporal Relation (Our focus!!!)

- Defines temporal dependencies between media objects
- Example: lip synchronization
- Time-dependent object
 - Media stream since there exist temporal relations between consecutive units of the stream
- Time-independent object
 - Traditional medium such as text or images
- Temporal synchronization
 - Relation between time-dependent and time-independent objects
 - Example: audio/video sync with slide show

Temporal Relations

- Synchronization considered at several levels of Multimedia Systems
- Level 1: OS and lower level communication layers
 - CPU scheduling, semaphores during IPC, traffic shaping network scheduling
 - Objective: avoid jitter at presentation time of one stream
- Level 2: Middleware/Session layer (Run-time)
 - Synchronization of multimedia streams (schedulers)
 - Objective: bounded skews between various streams
- Level 3: Application layer (Run-time)
 - Support for synchronization between time-dependent and timeindependent media together with handling of user interaction
 - Objective: bounded skews between time-dependent and timeindependent media

Synchronization Specification

Implicit

- Temporal relation specified implicitly during capturing of media objects
- Goal: use this temporal relation to present media in the same way as they were originally captured
- Example: Audio and Video recording and playback

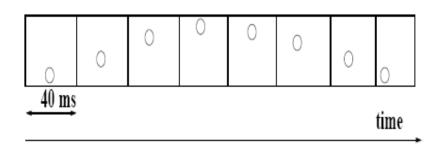
Explicit

- Temporal relation specified explicitly to define dependency in case media objects were created independently
- □ Example: creation of slide show
 - Presentation designer
 - selects slides,
 - creates audio objects,
 - defines units of audio presentation stream,
 - defines units of audio presentation stream where slides have to be presented

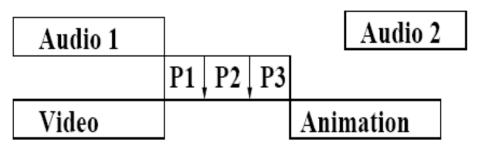
Logical Data Units and their Classification

- Time-dependent presentation units are called logical data units (LDU)s.
- LDU classification
 - □ Open
 - □ Closed
- LDUs important
 - In specification of synchronization

		Samples or Pixels		
		Notes or frames		
		Movements or Scenes		
		Symphony or Movie		


	LDU spec during capturing	LDU spec defined by user
Fixed LDU	Audio/Video	Animation/Timer
Variable LDU	Recorded Interactions	User Interactions

Synchronization Classification


Intra-object Synchronization

 Time relation between various presentation units of one timedependent media stream

Inter-object Synchronization

 Time relation between media objects belonging to two dime dependent media streams

Synchronization Classification

- Live Synchronization
 - Goal: exactly reproduce at presentation temporal relations as they existed during capturing process
 - Requirement: must capture temporal relation information during media capturing
 - □ Example: video conference, phone service
 - Example: recording and retrieval services presentations with delay

Synchronization Classification

Synthetic Synchronization

- Goal: arrange stored data objects to provide new combined multimedia objects via artificial temporal relations
- Requirements: support flexible synchronization relations between media
- □ Example: authoring, tutoring systems

Two phases:

- □ Specification phase define temporal relations
- □ Presentation phase present data in sync mode

Example:

□ 4 audio messages recorded related to parts of engine in animation. Animation sequence shows a slow 360 degree rotation of engine

re.

Synchronization Requirements during media presentations

- For intra-object synchronization
 - Need accuracy concerning jitter and EED delays in presentation of LDUs
- For inter-object synchronization
 - Need accuracy in parallel presentation of media objects
- Implication of blocking:
 - □ O.K. for time-independent media
 - □ Problem for time-dependent media gap problem

Gap Problem in Synchronization

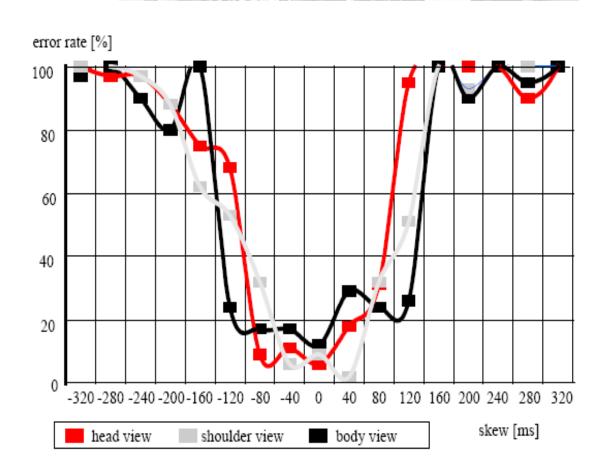
- What does blocking of stream mean for output device?
 - ☐ Should we repeat previous music, speech, picture?
 - ☐ How long should such gap exist?

Solution 1: restricted blocking method

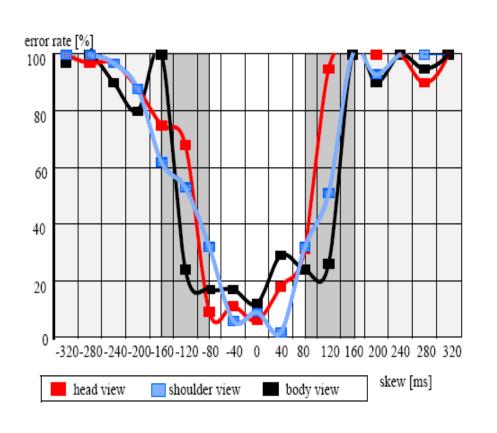
- Switch output device to last picture as still picture
- Switch output device to alternative presentation if gap between late video and audio exceeds predefined threshold

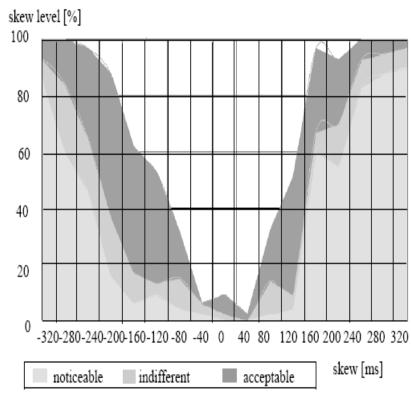
Solution 2: resample stream

- □ Speed up or slow down streams
- Off-line re-sampling used after capturing of media streams with independent streams
 - Example: concert which is captured with two independent audio/video devices
- Online re-sampling used during presentation in case gap between media streams occurs


Lip Synchronization

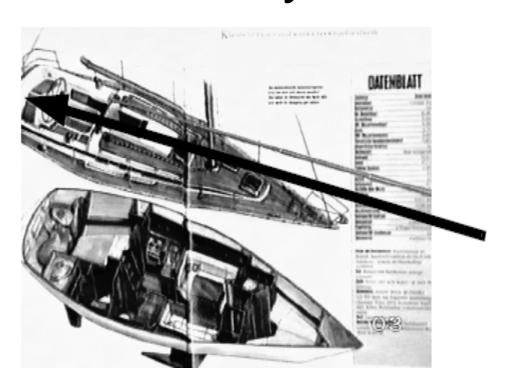
- Temporal relation between audio and video
- Synchronization skew
 - □ Time difference between related audio and video LDUs
- Streams in sync iff skew = 0 or skew ≤bound
- Negative skew: video before audio
- Positive skew: Audio before video

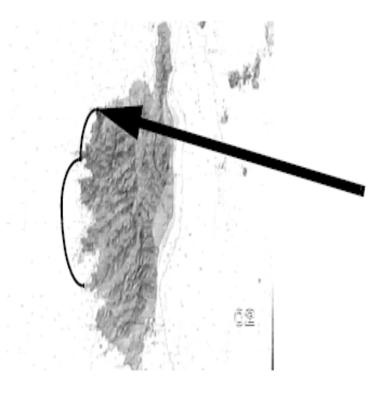




Lip Synchronization

Perception of Synchronization Errors

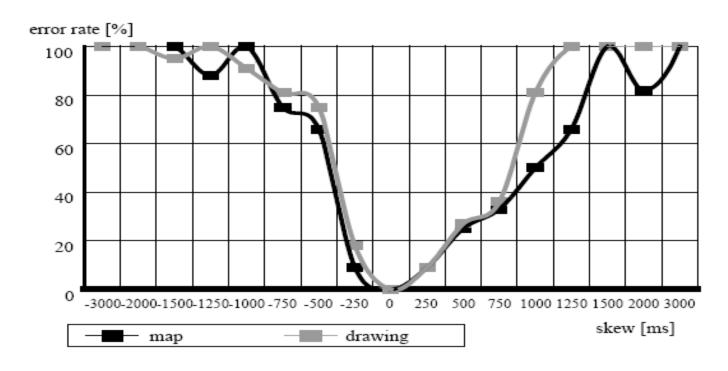

Skew Level found to be annoying



Lip Synchronization Requirements

- In sync:
 - \Box -80ms ≤ skew ≤ 80ms
- Out of sync:
 - □ Skew < -160ms</p>
 - □ Skew > 160ms
- Transient:
 - □ -160ms ≤ skew < -80ms
 </p>
 - □ 80ms < skew ≤ 160ms
 </p>

Pointer Synchronization



Pointer Sync based on technical drawing

Pointer Sync based on map

Pointer Synchronization

Negative skew: pointer before audio

Positive skew: pointer after audio

Pointer Synchronization Requirements

- In sync:
 - □-500ms ≤ skew ≤ 750ms
- Out of sync:
 - ☐ Skew < -1000ms
 </p>
 - □ Skew > 1250ms
- Transient sync situation:
 - □-1000ms ≤ skew < -500ms
 </p>
 - □ 750ms < skew ≤ 1250ms</p>

Other Sync Requirements

- Jitter delay of digital audio
 - ☐ Max. allowable jitter:
 - 5-10 ns (perception experiments)
 - 2 ms (other experiments)
- Combination of audio and animation
 - □ Not stringent as lip sync
 - ☐ Max allowable skew: +/- 80ms
- Stereo audio
 - Tightly coupled
 - ☐ Max allowable skew: 20 ms
 - □ Due to listening errors, suggestion even +/- 11ms
- Loosely coupled audio channels (speaker and background music)
 - Max allowable skew: 500ms

CS 414 - Spring 2009

Conclusion

- Carefully analyze what kind of synchronization is needed in your multimedia system and application
- Determine at which level you need synchronization
- Determine what the synchronization requirements should be based on prior experiments