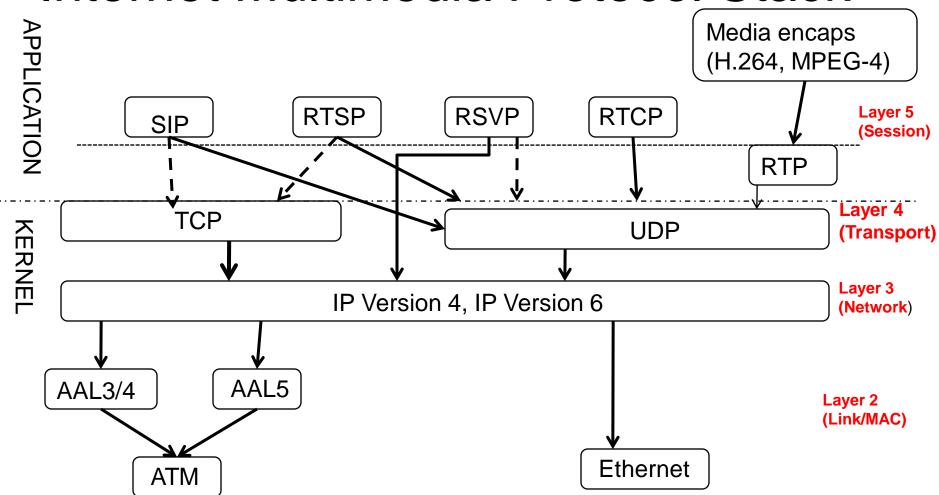
CS 414 – Multimedia Systems Design Lecture 21 – Case Studies for Multimedia Network Support (Layer 3)

Klara Nahrstedt Spring 2009



Outline

- Multimedia Network Technologies at the Layer 3
 - □ Past/Current technologies: IPv4
 - ☐ Future technologies: IPv6, IntServ, DiffServ

Internet Multimedia Protocol Stack

Layer 3 Internet Services

- Internet Protocol (IP) IP Version 4
 - Provides unreliable deliver of datagrams in a point-topoint fashion
 - □ Runs on top of any Layer 2 technologies
 - □ Supports
 - IP address of 32 bits
 - Different types of services (TOS)
 - Precedence relation
 - Services such as minimization of delay, maximization of throughput
 - Multicast
 - Internet Group Management Protocol for managing groups

New Internet Protocol - IPng

- Next Generation IP IP Version 6
 - □ Supports new features
 - New addressing and routing
 - □ IP Address 128 bits
 - □ Large hierarchical addresses, multicast addresses
 - More options of flow control and security
 - Real-time flows
 - End-to-end security
 - □ Provider selection
 - Host mobility
 - Auto-configuration/auto-reconfiguration
 - Traffic Classes

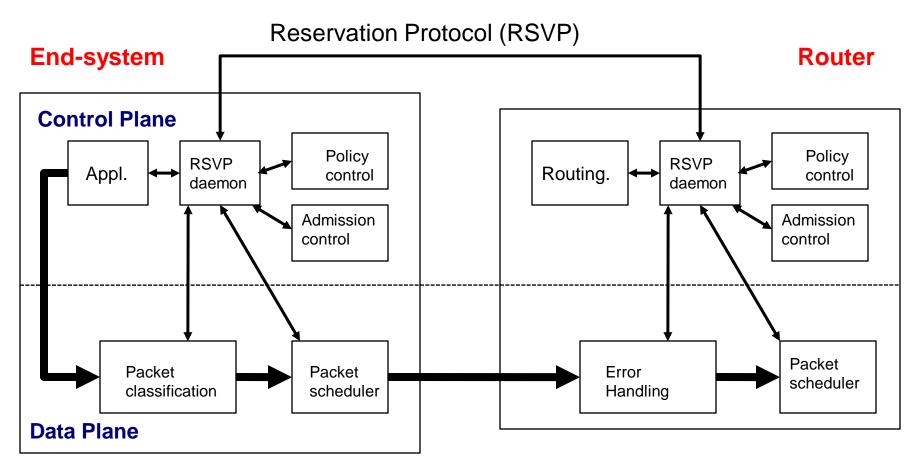
IP Packet Headers

Version	Header Length	TOS	Total length			
identification			Flag	Fragment offset		
Time to Live (TTL)		Protocol	Header Checksum			
32-bit Source IP Address						
32 bit Destination IP Address						

IPv4

Version	Traffic Class	Flow Label				
Payload Length			Next Header	Hop limit		
128-bit Source IP Address						
128-bit Destination IP Address						

IPv6

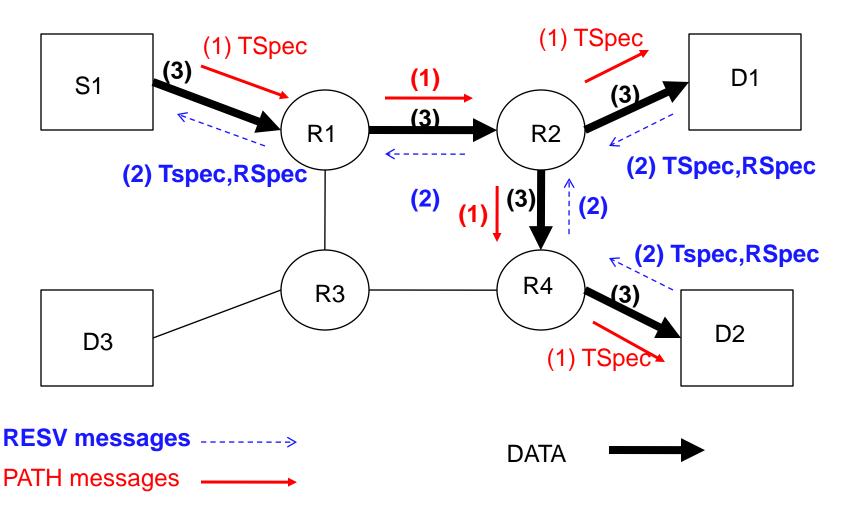


QoS in Layer 3 - Internet Integrated Services

- To provide network QoS in the Internet, IETF reacted by
 - Creating Working Group (IntServ)
 - Deploying Internet Integrated Services
- Development of Control (Establishment) Protocol to reserve resources per flow
 - □ Resource Reservation Protocol (RSVP)
- Development of QoS-aware network services within IP
 - ☐ Guaranteed class-of-service
 - Deterministic QoS guarantees
 - Controlled-load class-of-service
 - Statistical QoS guarantees

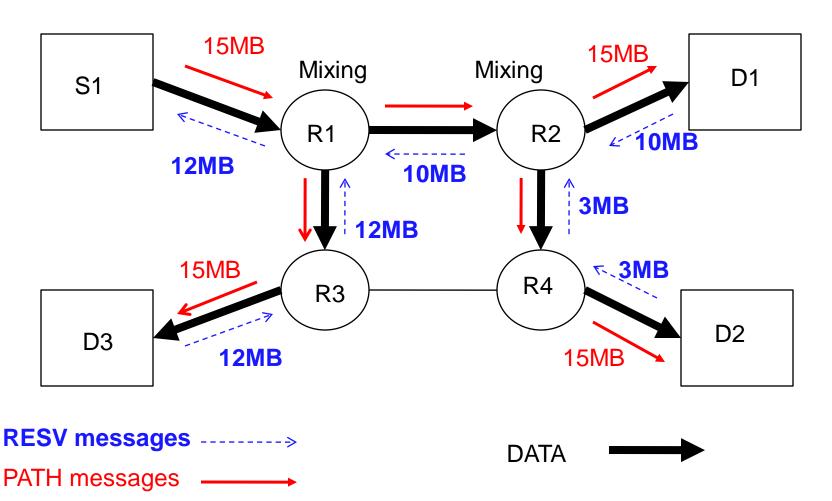
М

Integrated Services (IntServ) Architecture


M

RSVP

- Provides reservation for data flows
 - Flow specification is represented via
 - Traffic specification, TSpec
 - Characteristics of the data flow
 - Request specification, Rspec
 - Description of required QoS (desired flow behavior)
- Is receiver-oriented and unidirectional
- Uses two types of messages:
 - □ PATH messages and RSVP messages
- Protocol
 - Send PATH message with TSpec from Sender to Receiver(s)
 - 2. Send RESV message with Rspec from Receiver(s) to Sender
 - 3. Send DATA with resulting reserved QoS


M

RSVP Control and Data Flow

Mixing Reservations

Reservation Structures

- Resource Reservation Table
 - ☐ Stores admitted/reserved resources
- RSVP Messages

Version	Flags	Message Type	RSVP Checksum
Send TTL		Reserved	RSVP Length

RSVP Features

- Simplex Reservation
 - Reservation only in one direction (simplex flow)
- Receiver Oriented
 - Supports multicast communication
- Routing Independent
- Policy Independent
- Soft State
 - Reservation state has timer associated with the state
 - □ When timer expires, state is automatically deleted
 - RSVP periodically refreshes reservation state to maintain state along the path

Reservation Styles (1)

- Wild-card Filter Style
 - WF implies shared reservation and wild-card sender selection
 - □ All receivers share a single reservation whose size is the largest of the resource requests from the receivers
 - □ All upstream senders can use the reservation
 - WF(*,{Q}), where
 - * represents wild-card sender selection
 - {Q} represents Flow Spec.

Reservation Styles (2)

- Fixed-filter (FF) style
 - □ FF implies distinct reservation and explicit sender selection
 - □ Distinct reservation is established for specific sender
 - □ FF(S1(Q1), S2(Q2), ... Sn(Qn)), where
 - S1, ..Sn are senders
 - Q1,...,Qn are corresponding flow specs

Reservation Styles (3)

- Shared explicit (SE) style (Dynamic filter)
 - SE implies shared reservation but explicit sender selection
 - SE creates a single reservation shared by specific senders
 - □ Receiver can explicitly list what senders are to be included in reservation
 - □ SE((S1,...,Sn){Q}), where
 - S1,...,Sn are senders
 - Q corresponding flow spec

Service Models

- Describe interface between network and its users in resource allocation architecture
- Describe what services users can ask from network and what kind of resource commitments the network can offer
- IntServ standard
 - □ Guaranteed Service
 - □ Controlled-load Service

Flow Specification (1)

(Traffic Shape General Parameters)

- Peak rate highest rate at which a source can generate traffic
- Average rate average transmission rate over a time interval
- Burst size max amount of data that can be injected into network at peak rate

Flow Specification (2)

(in IntServ)

- Traffic described in terms of token bucket parameters
 - □ Token arrival rate 'r'
 - □ Bucket depth 'b'
- Amount of bits transmitted during any interval of length t: A(t) ≤ r * t + b

Service Requirements

(Application-specific)

- Minimum Bandwidth min. amount of BW required by application
- Delay can be specified as average delay or worst case delay
 - Propagation delay + Transmission delay + Queuing delay
- Delay Jitter specifies max. difference between the largest and smallest delays that packets experience
- Loss Rate ratio of lost packets and total packets transmitted

Conclusion

- IntServ over Link Layers
 - □ IETF created Integrated Services over Specific Link Layers (ISSLL)
 - □ Keep in mind that one needs to do
 - Service mapping
 - Setup protocol mappings