CS 414 – Multimedia Systems Design Lecture 16 – Multimedia Transport Subsystem (Part 3)

Klara Nahrstedt Spring 2009



#### Administrative

- MP2: deadline Monday, March 2, demos 5-7pm (sign up in class on Monday)
- Multimedia related talk: Thursday, February 26, 4pm 1109 SC, "VoIP over 802.11" by Henning Schulzrinne
- HW1: posted on Friday, February 27 and due Friday, March 6
- Midterm review session: Friday, March 6, in class
- Midterm: Monday March 9, in class
- Class canceled on Friday, March 13 due to EOH



#### **Outline**

- Transmission Phase
  - □ Traffic Shaping
    - Isochronous Traffic Shaping
    - Shaping Bursty Traffic
  - □ Rate Control
  - □ Error Control

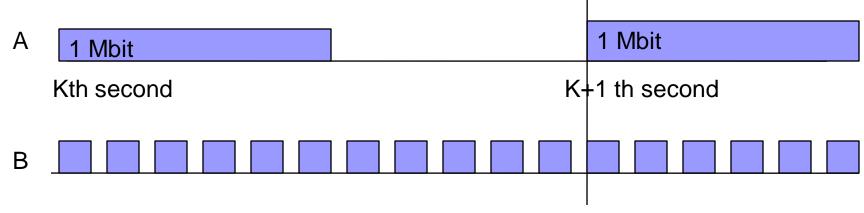


#### QoS Enforcement – Traffic Shaping

- In Packet Network, admission control, reservation is not sufficient to provide QoS guarantees
- Need traffic shaping at the entry to network and within network
- Traffic shaping
  - Decides how packets will be sent into the network, hence regulates traffic
  - □ Decides whether to accept a flow's data
  - □ Polices flows



## Purpose of Traffic Shaping


#### Traffic shape

- □ A way of a flow to describe its traffic to the network
- Based on traffic shape, network manager (s) can determine if flow should be admitted into the network
- Given traffic shape, network manager(s) can periodically monitor flow's traffic



### Example

- If we want to transmit data of 100 Mbps,
  - □ Traffic Shape A: Do we take 1 packet size of size 100 Mbit and send it once a second, or
  - □ Traffic Shape B: Do we take 1 packet of size 1 Kbit and send it every 10 microseconds?



#### Ŋe.

## Flow's Traffic Shape Parameters (Network QoS)

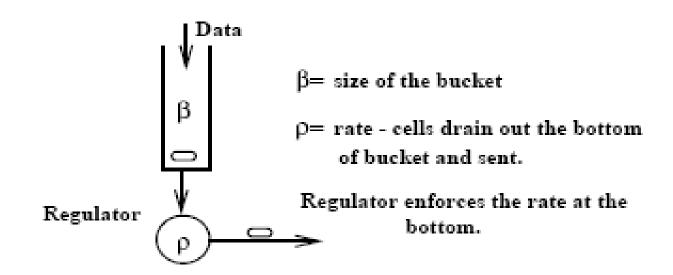
- Traffic Envelope
  - □ Peak rate
  - □ Average rate
  - □ Burst length
  - Burst duration
- Service Envelope
  - Maximum tolerable delay
  - □ Desired delay jitter
  - □ others



#### Source Classification

- Classification of sources :
  - □ Data bursty, weakly periodic, strongly regular
  - □ Audio continuous, strong periodic, strong regular
  - □ Video continuous, bursty due to compression, strong periodic, weakly regular
- Classification of sources into two classes:
  - □ Constant Bit Rate (CBR) audio
  - □ Variable Bit rate (VBR) video, data




#### **Bandwidth Allocation**

- CBR traffic (shape defined by peak rate)
  - CBR source needs peak rate allocation of bandwidth for congestion-free transmission
- VBR traffic (shape defined by average and peak rate)
  - average rate can be small fraction of peak rate
    - underutilization of resources can occur if pessimistic allocation (peak rate allocation) is applied
    - Losses can occur if optimistic allocation (average rate allocation) is applied

### M

## Isochronous Traffic Shaping (Simple Leaky Bucket Traffic Shaper)

 Developed by Jon Turner, 1986 (Washington University, St. Louis)

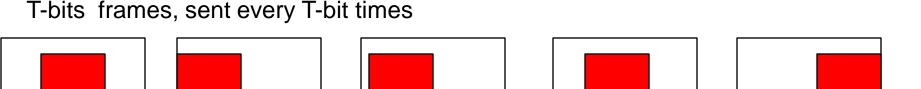


Each flow has its own leaky bucket.

### м

### Example

- Consider for audio flow, size of the bucket
  - $\square$   $\beta$  = 16 Kbytes
  - □ Packet size = 1 Kbytes (one can accumulate burst up to 16 packets in the bucket)
  - □ Regulator's rate  $\rho = 8$  packets per second, or 8KBps or 64Kbps
- Consider video flow, size of bucket
  - $\square$   $\beta$  = 400 Kbytes
  - □ Packet size = 40 Kbytes (burst of 10 packets)
  - $\square$  Regulator's rate  $\rho$  = 5 packets per second, 200 KBps, 1600Kbps

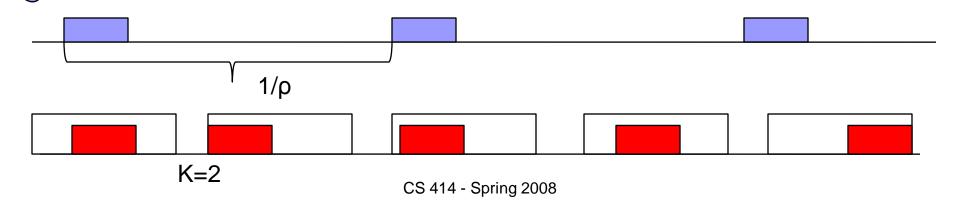



# Isochronous Traffic Shaping (r,T)-smooth Traffic Shaper

- Developed by Golestani, 1990
- Part of stop-and-go queuing/scheduling algorithm
- Traffic divided into T-bits frames, where T is fixed
- r-bits packet size per flow is considered, where r varies on a per flow basis



## (r,T) Traffic Shaper




r-bits packets r ≤ T Time line

- Flow is permitted to inject no more than r bits of data into the network frame in any T bit times
- if the sender wants to send more than one packet of r-bits, it must wait for next T-bit frame.
- A flow that obeys this rule has (r,T)-smooth traffic shape.

## Comparison

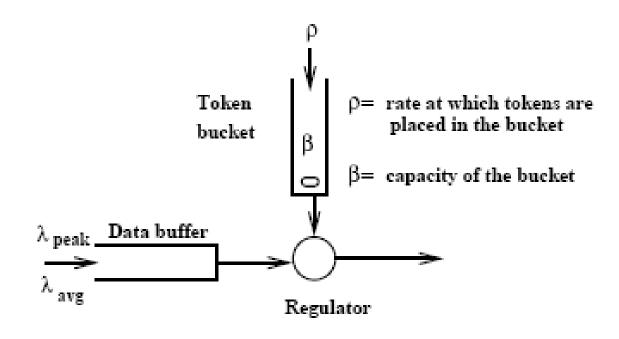
- It is relaxed from the simple leaky bucket traffic shaper because
  - Rather than sending one packet of size c every 1/p time units, (in simple leaky bucket)
  - The flow can send c\*k bits every 1/p time units, where k is T-bits times within the period 1/p





# Limitations of Isochronous Traffic Shaping

- In case of (r,T)-smooth traffic shaping, one cannot send packet larger than r bits long, i.e., unless T is very long, the maximum packet size may be very small.
- The range of behaviors is limited to fixed rate flows
- Variable flows must request data rate equal to peak rate which is wasteful


## 100

# Isochronous Traffic Shaping with Priorities

- Idea: if a flow exceeds its rate, excess packets are given lower priority
- If network is heavily loaded, packets will be preferentially dropped
- Decision place to assign priority
  - ☐ At the sender
    - Application marks its own packets since application knows best which packets are less important
  - □ In the network (policing)
    - Network marks overflow packets with lower priority



## Shaping Bursty Traffic Patterns (Token Bucket)



$$\lambda_{peak} > \rho > \lambda_{avg} =>$$

stability and bandwidth utilization



#### Token Bucket

- The effect of TB is different than Leaky Bucket (LB)
- Consider sending packet of size b tokens  $(b < \beta)$ :
  - □ Token bucket is full packet is sent and b tokens are removed from bucket
  - □ Token bucket is empty packet must wait until b tokens drip into bucket, at which time it is sent
  - □ Bucket is partially full let's consider B tokens in bucket;
    - if b ≤ B then packet is sent immediately,
    - Else wait for remaining b-B tokens before being sent.

### Comparison between TB and LB

| Token Bucket                                                                                                                                                                             | Simple Leaky Bucket                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| TB permits burstiness, but bounds it                                                                                                                                                     | LB forces bursty traffic to smooth out                     |
| Burstiness is bounded as follows:<br>- Flow never sends more than $\beta+\tau^*\rho$ tokens worth of data in interval $\tau$ and<br>- Long-term transmission rate will not exceed $\rho$ | Flow never sends faster than ρ worth of packets per second |
| TB does not have discard or priority policy                                                                                                                                              | LB has priority policy                                     |
| TB more flexible                                                                                                                                                                         | LB is rigid                                                |
| TB is easy to implement -Each flow needs counter to count tokens, - each flow needs timer to determine when to add new tokens to the counter                                             | LB is easy to implement                                    |

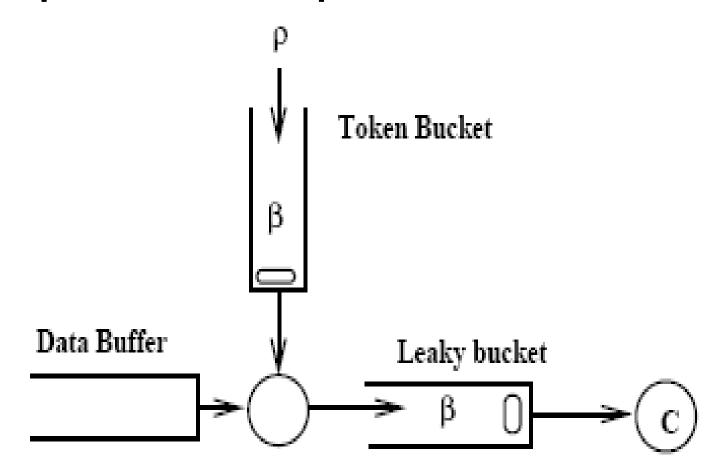


#### **Token Bucket Limitation**

- Difficulty with policing
  - At any time the flow is allowed to exceed rate by number of tokens

#### Reasoning

- At any period of time, flow is allowed to exceed rate ρ by β tokens
- If network tries to police flows by simply measuring their traffic over intervals of length τ, flow can cheat by sending β+τ\*ρ tokens of data in every interval.
- □ Flow can send data equal to 2β+2τ\*ρ tokens in the interval 2τ and it is supposed to send at most β+2τ\*ρ tokens worth of data




# Token Bucket with Leaky Bucket Rate Control

- TB allows for long bursts and if the bursts are of high-priority traffic, they may interfere with other high-priority traffic
- Need to limit how long a token bucket sender can monopolize network



## Composite Shaper





## Composite Shaper

- Combination of token bucket with leaky bucket
- Good policing
  - □ But remains hard, although confirming that the flow's data rate does not exceed C is easy
- More complexity for implementation
  - Each flow requires two counters and two timers (one timer and one counter for each bucket)



#### Performance Guarantees

- Every traffic management needs QUEUE MANAGEMENT (QM)
- Statistical versus Deterministic Guarantees
- Conservation of Work
  - QM schemes differentiate if they are work conserving or not
  - Work conserving system sends packet once the server has completed service (examples – FIFO, LIFO)
  - Non-work conserving scheme server waits random amount of time before serving the next packet in queue, even if packets are waiting in the queue
    CS 414 - Spring 2008



#### Conclusion

- Traffic Shaping happens at the entry to the network
- It is a very important function to regular and police traffic at the edges to avoid huge bursts coming into the network