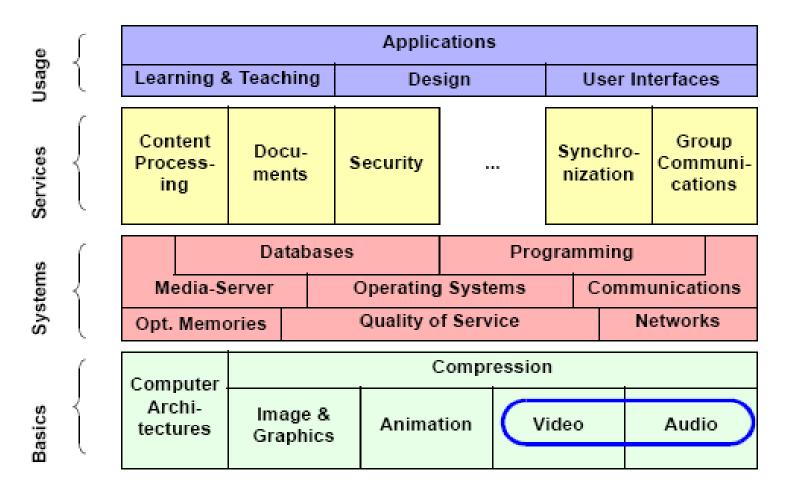
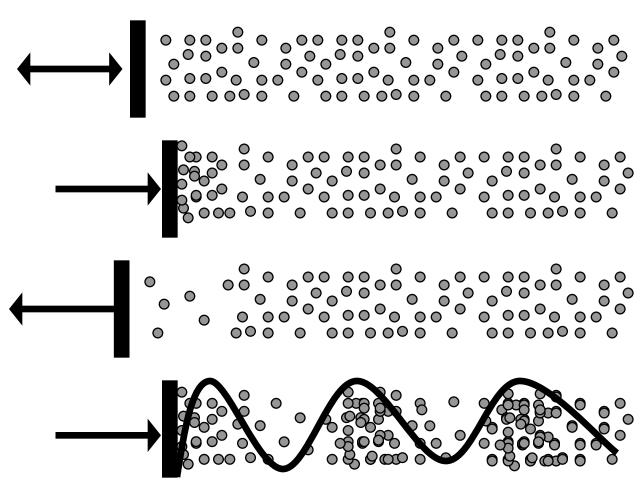
CS 414 – Multimedia Systems Design Lecture 2 – Auditory Perception and Digital Audio


Klara Nahrstedt Spring 2009

Administrative

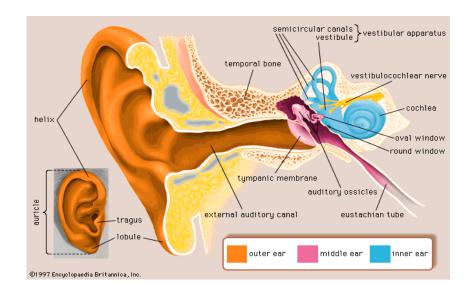
- Form Groups for MPs
 - □ Deadline: Latest January 26 to email TA hnguyen5@illinois.edu



Auditory Perception

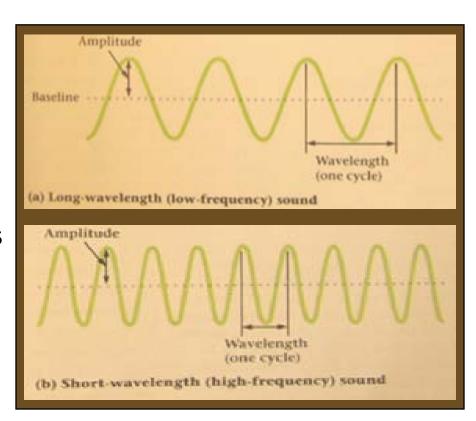
- Sound physical phenomenon caused by vibration of material
- These vibrations trigger pressure wave fluctuations in the air
- Wave forms

Changes in Air Pressure



Auditory System

- Ears, parts of brain, and neural pathways
- Changes in pressure move hair-like fibers within the inner ear


 Movements result in electrical impulses sent to the brain

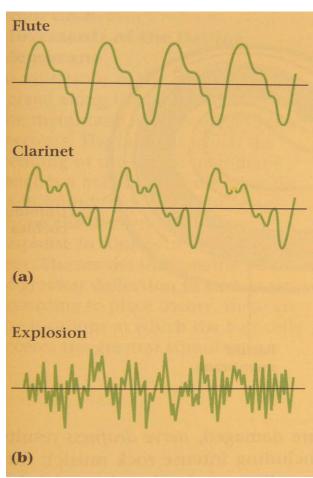
Physical Dimensions

- Amplitude
 - height of a cycle
 - relates to loudness
- Wavelength (w)
 - distance between peaks
- Frequency (λ)
 - cycles per second
 - relates to pitch
 - \square λ w = velocity
- Most sounds mix many frequencies & amplitudes

Sound is repetitive changes in air pressure over time

Sound Perception and Psychoacoustics

- Psychoacoustics
 - Study the correlation between the physics of acoustical stimuli and hearing sensations
 - Experiments data and models are useful for audio codec
- Modeling human hearing mechanisms
 - □ Allows to reduce the data rate while keeping distortion from being audible



Psychological Dimensions

- Loudness
 - □ higher amplitude results in louder sounds
 - measured in decibels (db), 0 db represents hearing threshold
- Pitch
 - □ higher frequencies perceived as higher pitch
 - □ hear sounds in 20 Hz to 20,000 Hz range

Psychological Dimensions (cont.)

- Timbre (tam-bre)
 - complex patterns added to the lowest, or *fundamental*, frequency of a sound, referred to as *spectra*
 - spectra enable us to distinguish musical instruments
- Multiples of fundamental frequency give music
- Multiples of unrelated frequencies give noise

Sound Intensity

Intensity (I) of a wave is the rate at which sound energy flows through a unit area (A) perpendicular to the direction of travel
1 A F
D

 $I = \frac{1}{A} \frac{\Delta E}{\Delta t} = \frac{P}{A}$

P measured in watts (W), A measured in m²

- Threshold of hearing is at 10⁻¹² W/m²
- Threshold of pain is at 1 W/m²

Decibel Scale

 Describes intensity relative to threshold of hearing based on multiples of 10

$$dB = 10\log\frac{I}{I_0}$$

 I_0 is reference level = 10^{-12} W/m²

Decibels of Everyday Sounds

Sound	Decibels
Rustling leaves	10
Whisper	30
Ambient office noise	45
Conversation	60
Auto traffic	80
Concert	120
Jet motor	140
Spacecraft launch	180

Interpretation of Decibel Scale

- 0 dB = threshold of hearing (TOH)
- 10 dB = 10 times more intense than TOH
- 20 dB = 100 times more intense than TOH
- 30 dB = 1000 times more intense than TOH
- An increase in 10 dB means that the intensity of the sound increases by a factor of 10
- If a sound is 10^x times more intense than another, then it has a sound level that is 10*x more decibels than the less intense sound

M

Loudness from Multiple Sources

Use energy combination equation

$$L = 10\log(10^{\frac{L1}{10}} + 10^{\frac{L2}{10}} + ... + 10^{\frac{LN}{10}})$$

where $L_1, L_2, ..., L_n$ are in dB

Exercises

- Show that the threshold of hearing is at 0 dB
- Show that the threshold of pain is at 120 dB
- Suppose an electric fan produces an intensity of 40 dB. How many times more intense is the sound of a conversation if it produces an intensity of 60 dB?
- One guitar produces 45 dB while another produces 50 dB. What is the dB reading when both are played?
- If you double the physical intensity of a sound, how many more decibels is the resulting sound?

Loudness and Pitch

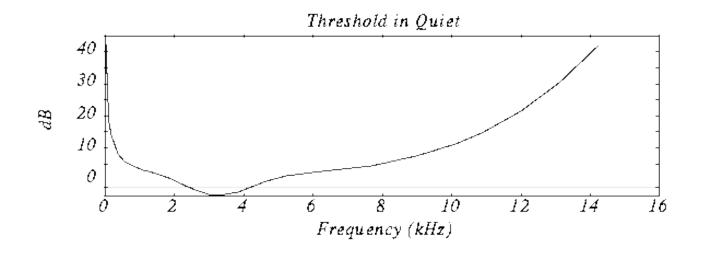
- More sensitive to loudness at mid frequencies than at other frequencies
 - □ intermediate frequencies at [500hz, 5000hz]
- Perceived loudness of a sound changes based on the frequency of that sound
 - □ basilar membrane reacts more to intermediate frequencies than other frequencies

Fletcher-Munson Contours

Each contour represents an equal perceived sound

Masking

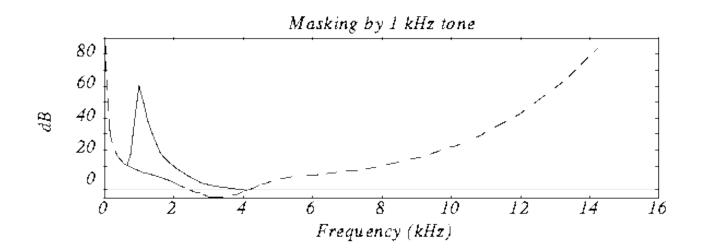
Perception of one sound interferes with another


Frequency masking

Temporal masking

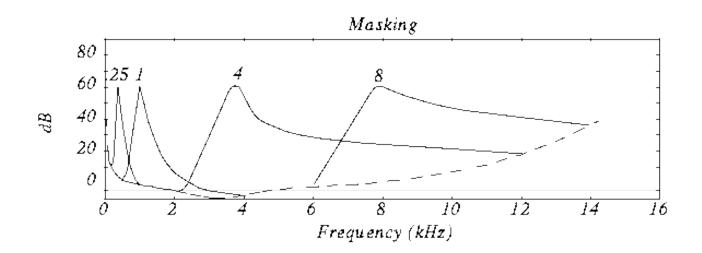
Frequency Masking

 Louder, lower frequency sounds tend to mask weaker, higher frequency sounds

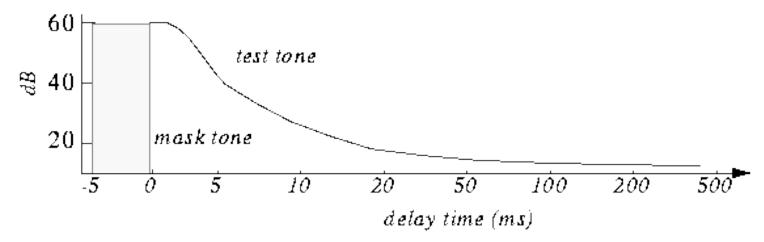


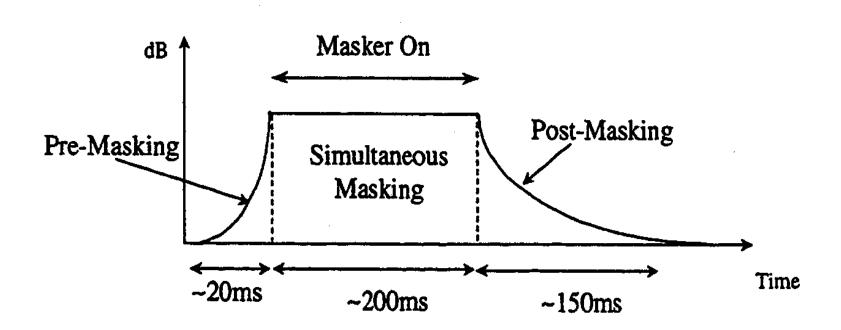
From http://www.cs.sfu.ca/CourseCentral/365/

Frequency Masking


 Louder, lower frequency sounds tend to mask weaker, higher frequency sounds

Frequency Masking


 Louder, lower frequency sounds tend to mask weaker, higher frequency sounds


Temporal Masking

- When exposed to a loud sound, the human ear contracts slightly to protect delicate structures
- Causes louder sounds to overpower weaker sounds just before and just after it

Temporal Masking

Summary

- Auditory Perception is very important for understanding digital audio representation
- Psychoacoustic is used in MP3 audio compression