

Outline

Seribe: Ryan

Halid Problems Key Exchange

Collision Resistance

Domain extension

Given a hash function H: $\{0,1\}^{2n} \rightarrow \{0,1\}^n$, build a hash function $(0,1)^{4n} \rightarrow \{0,1\}^n$ Merkle tree

Domain extension

Given a hash function H:
$$\{0,1\}^{2n} \rightarrow \{0,1\}^n$$
, build a hash function $\{0,1\}^{4n} \rightarrow \{0,1\}^n$

Suppose G is not C.R.

H is C.R.

H A G $\rightarrow \times_1 \times_2 \times_3 \times_4$

ken so is G.

Sit. Gk, $\times_2 \times_3 \times_4$

y2 ≠ y1'y2' s +·

= G(x1x1 x3 x1)

$$y_{1} = H(x_{1} \times x_{2})$$

$$y_{2} = H(x_{3} \times x_{4})$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{1}' = H(x_{3}' \times x_{4}')$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{3}' = H(x_{3}' \times x_{4}')$$

$$y_{4}' = H(x_{1}' \times x_{2}')$$

$$y_{5} = H(x_{3}' \times x_{4}')$$

$$y_{6} = H(x_{3}' \times x_{4}')$$

$$y_{7} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

$$y_{9} = H(x_{3}' \times x_{4}')$$

$$y_{1}' = H(x_{3}' \times x_{4}')$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{3} = H(x_{3}' \times x_{4}')$$

$$y_{4} = H(x_{3}' \times x_{4}')$$

$$y_{5} = H(x_{3}' \times x_{4}')$$

$$y_{6} = H(x_{3}' \times x_{4}')$$

$$y_{7} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

$$y_{9} = H(x_{3}' \times x_{4}')$$

$$y_{1}' = H(x_{3}' \times x_{4}')$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{3} = H(x_{3}' \times x_{4}')$$

$$y_{4} = H(x_{3}' \times x_{4}')$$

$$y_{5} = H(x_{3}' \times x_{4}')$$

$$y_{6} = H(x_{3}' \times x_{4}')$$

$$y_{7} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

$$y_{9} = H(x_{3}' \times x_{4}')$$

$$y_{1}' = H(x_{3}' \times x_{4}')$$

$$y_{2}' = H(x_{3}' \times x_{4}')$$

$$y_{3} = H(x_{3}' \times x_{4}')$$

$$y_{4} = H(x_{3}' \times x_{4}')$$

$$y_{5} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

$$y_{8} = H(x_{3}' \times x_{4}')$$

Markle-Dangard

Domain extension

Given a hash function H: $\{0,1\}^{2n} \rightarrow \{0,1\}^n$, build a hash function $\{0,1\}^{8n} \rightarrow \{0,1\}^n$ length of string $\{(1,1)^{2n} \rightarrow \{0,1\}^n\}$.

Domain extension

G,

Given a hash function H: $\{0,1\}^{2n} \rightarrow \{0,1\}^n$, build a hash function \checkmark : $\{0,1\}^* \rightarrow \{0,1\}^n$

Authenticated Symmetric Encryption

Recap: so far

Confidentiality: semantic security against a CPA attack

• Encryption secure against eavesdropping only

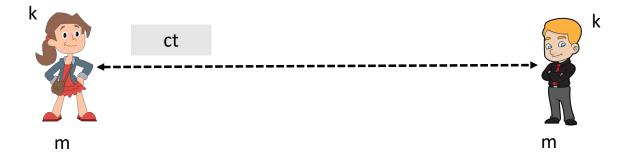
Integrity:

- Existential unforgeability under a chosen message attack
- CBC-MAC, HMAC...

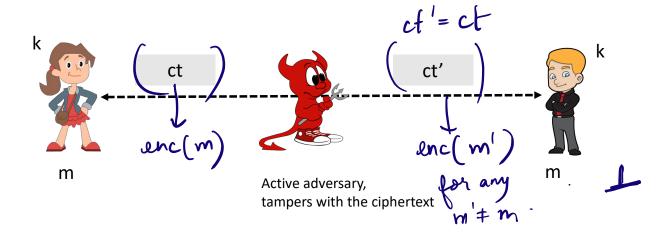
This module: encryption secure against tampering

Ensuring both confidentiality and integrity

Recap: Encryption



Anthenticated Recapt Encryption



Authenticated Encryption

An authenticated encryption system (E,D) is a cipher where

As usual: E: $K \times M \times N \longrightarrow C$

but D: $K \times C \times N \longrightarrow M \cup \{\bot\}$

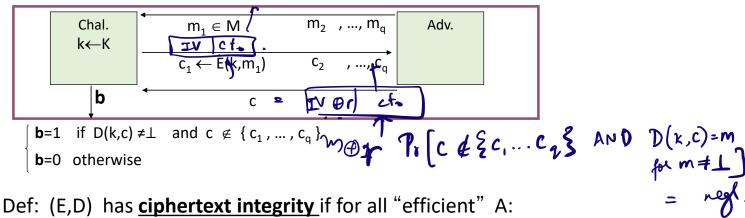
Security: the system must provide

- sem. security under a CPA attack, and
- ciphertext integrity:

attacker cannot create new ciphertexts that decrypt properly

Ciphertext Integrity

Let (E,D) be a cipher with message space M.



Def: (E,D) has <u>ciphertext integrity</u> if for all "efficient" A: $Adv_{C|}[A,E] = Pr[Chal. outputs 1]$ is "negligible."

Ciphertext Integrity

Def: cipher (E,D) provides authenticated encryption (AE) if it is

- semantically secure under CPA, and
- (2) has ciphertext integrity

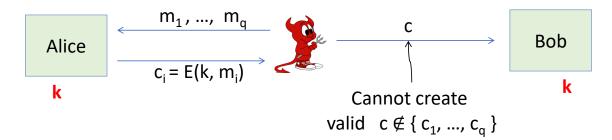
Bad example: CBC with rand. IV does not provide AE

• $D(k,\cdot)$ never outputs \perp , hence adv. easily wins CI game

ر+'

Implication 1: Authenticity

Attacker cannot fool Bob into thinking a message was sent from Alice



 \Rightarrow if D(k,c) $\neq \perp$ Bob knows message is from someone who knows k (but message could be a replay)

Implication 2

chosen plaintext attack

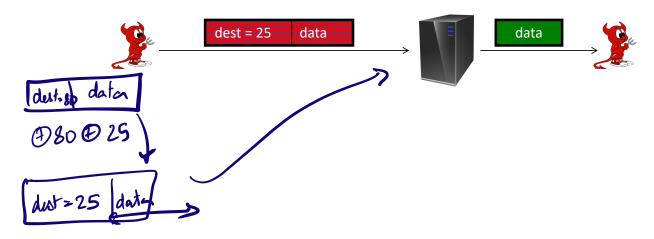
Authenticated encryption \Rightarrow

Security against chosen ciphertext attacks

Example Chosen Ciphertext Attacks

Adversary has ciphertext c that it wants to decrypt

• Often, adv. can fool server into decrypting certain ciphertexts (not c)



Chosen Ciphertext (CCA) Security

Adversary's power: both CPA and CCA

- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge (conservative modeling of real life)

Adversary's goal: Break sematic security

Chosen Ciphertext (CCA) Security: Definition

Chosen Ciphertext (CCA) Security: Definition

• **Example**: CBC with random IV is not CCA-secure

$$m_0, m_1 : |m_0| = |m_1| = 1$$

$$c \leftarrow E(k, \mathbf{m_b}) = (IV, c[0])$$

$$c' = (IV \oplus 1, c[0])$$

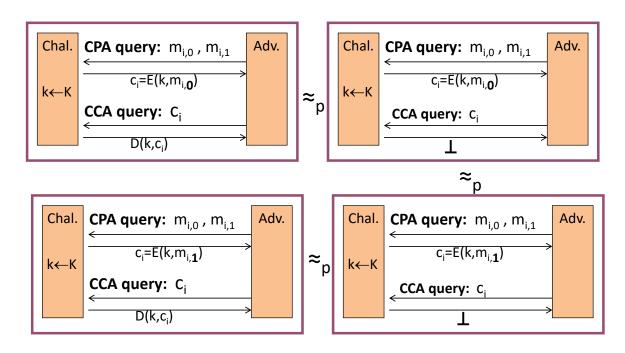
$$D(k, \mathbf{c'}) = ?$$

Authenticated Encryption => CCA Security

<u>Thm</u>: Let (E,D) be a cipher that provides Authenticated Encryption. Then (E,D) is CCA secure!

Proof on next page..

Proof by pictures



So what?

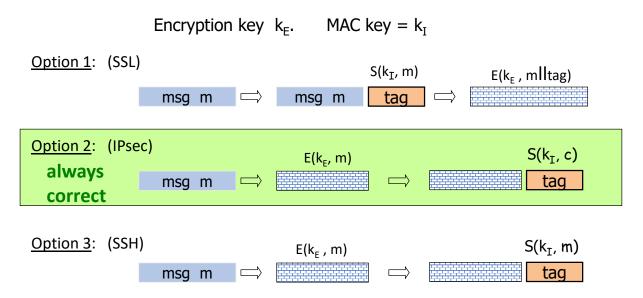
Authenticated encryption:

 ensures confidentiality against an active adversary that can decrypt some ciphertexts

Limitations:

- does not prevent replay attacks
- does not account for side channels (timing)

Combining MAC and ENC (CCA)



Authenticated Encryption Theorems

Let (E,D) be CPA secure cipher and (S,V) secure MAC. Then:

- 1. Encrypt-then-MAC: always provides A.E.
- 2. MAC-then-Encrypt: not necessarily A.E. or CCA secure

However: when (E,D) is rand-CTR mode or rand-CBC M-then-E provides authenticated encryption