

Lecture 19

Outline

Wrap-up commitments

NIZKs from pairings

Pedersen Commitments

Pedersen Commitments

- Unconditionally hiding
 - Given a commitment c, every value x is equally likely to be the value committed in c.
 - For example, given x,r, and any x', there exists r' such that $g^xh^r = g^{x'}h^{r'}$, in fact $r = (x-x')a^{-1} + r \mod q$.

Pedersen Commitments

- Computationally binding
 - Suppose committer sent g^xh^r mod p for some (x, r)
 - Now it finds $x' \neq x$ and r' such that $c = g^{x'}h^{r'}$.
 - This means that the sender ``knows'' $log_g(h) = (x'-x)\cdot (r-r')^{-1}$.
 - This means: assuming DL is hard, the sender cannot open the commitment to a different value.

Application: Coin Tossing

- Alice and Bob want to decide on something by tossing a coin over a phone. How to do this securely?
- Solution: Alice commits to a random bit $b_A \leftarrow \{0, 1\}$, and sends Com $(b_A; r)$ to Bob
- Bob selects a random bit $b_R \leftarrow \{0, 1\}$ and sends it to Alice
- Alice decommits b_△
- Alice and Bob output b_A xor b_B

Zero-Knowledge

Problems in NP

Prover Verifier

Prover Didn't learn witness NP Statement x Witness that x is true Outputs

view

Ideal World (Proof)

Simulator

NP Statement x
No witness

Ideal World (Proof)

No witness

Ideal World (Proof)

Prover Didn't learn witness NP Statement x Witness that x is true Outputs

Ideal World (Proof)

Outputs similar view

view

Cannot distinguish the two

Prover

X = (A, B)

Knows η s.t. $A = \eta$ (B)

Verifier

Verifier

Permuting the Graph

$$G = \varphi(A)$$

Verifier

Simulator

$$X = (A, B)$$

Verifier

Knows c in advance

Simulator

$$X = (A, B)$$

Verifier

Knows c in advance

$$G = \phi(c)$$

G

Simulator

$$X = (A, B)$$

Verifier

Knows c in advance

$$G = \phi(c)$$

G

