Outline

- Wrap-up commitments
- NIZKs from pairings
Pedersen Commitments
Pedersen Commitments

• Unconditionally hiding
 • Given a commitment c, every value x is equally likely to be the value committed in c.
 • For example, given x, r, and any x’, there exists r’ such that \(g^x h^r = g^{x'} h^{r'} \), in fact \(r = (x-x') a^{-1} + r \text{ mod } q. \)
Pedersen Commitments

• Computationally binding

 • Suppose committer sent $g^x h^r \mod p$ for some (x, r)

 • Now it finds $x' \neq x$ and r' such that $c = g^{x'} h^{r'}$

 • This means that the sender ``knows'' $\log_g(h) = (x' - x) \cdot (r - r')^{-1}$.

 • This means: assuming DL is hard, the sender cannot open the commitment to a different value.
Application: Coin Tossing

• Alice and Bob want to decide on something by tossing a coin over a phone. How to do this securely?

• Solution: Alice commits to a random bit $b_A \leftarrow \{0, 1\}$, and sends $\text{Com}(b_A; r)$ to Bob

• Bob selects a random bit $b_B \leftarrow \{0, 1\}$ and sends it to Alice

• Alice decommits b_A

• Alice and Bob output $b_A \text{ xor } b_B$
Zero-Knowledge
Problems in NP
Graph Isomorphism
Graph Isomorphism
Real World

Prover

Verifier

NP Statement x
Witness that x is true
Real World

Prover

Verifier

NP Statement x
Witness that x is true

Didn't learn witness

Outputs
view
Real World

Prover

Verifier

Didn't learn witness

NP Statement x

Witness that x is true

Outputs view

Ideal World (Proof)

Simulator

NP Statement x

Didn't learn witness

No witness
Real World

Prover

NP Statement x

Verifier

Witness that x is true

Outputs view

Ideal World (Proof)

Simulator

NP Statement x

No witness

Verifier

Didn't learn witness

Witness that x is true

Outputs view
Real World

Prover

NP Statement \(x \)

Witness that \(x \) is true

Verifier

Outputs view

Ideal World (Proof)

Simulator

NP Statement \(x \)

Didn't learn witness

Verifier

Didn't learn witness

Outputs similar view
Real World

Prover

NP Statement x

Verifier

Didn't learn witness

Outputs view

Ideal World (Proof)

Simulator

NP Statement x
No witness

Verifier

Didn't learn witness

Outputs similar view

Cannot distinguish the two
Graph Isomorphism
Graph Isomorphism
Graph Isomorphism

Prover

\[X = (A, B) \]

Verifier

Knows \(\eta \) s.t.

\[A = \eta (B) \]
Graph Isomorphism

Prover

\[X = (A, B) \]

Knows \(\eta \) s.t.

\[A = \eta(B) \]

Verifier
Permuting the Graph

\[G = \varphi(A) \]
Graph Isomorphism

Prover

\[X = (A, B) \]

Verifies that \(A = \eta(B) \) where \(\eta \) is a function known to be an isomorphism.

\[G = \varphi(A) \]

Verifier

\[c = A \text{ or } B \]
Graph Isomorphism

Simulator

\[X = (A, B) \]

Verifier

Knows c in advance
Graph Isomorphism

Simulator

\[X = (A, B) \]

Verifier

\[G = \varphi(c) \]

Knows \(c \) in advance

\[G \]

\[\varphi \]
Graph Isomorphism

Simulator

$X = (A, B)$

Verifier

Knows c in advance

$G = \varphi(c)$