Commitments
Commitments
Commitments
Commitments

M

r_A

"Commit"

r_B

"Decommit"

"M"
Commitments

- Correctness:
- Binding
- Hiding

\[\Pr \left[\text{Decommit} \mathcal{C}_R(\tau, r_A) = M \right] = \text{negl} \]

\[\Pr \left[\text{Decommit} \mathcal{C}_R(\tau, r_A^2) = M_2 \right] = \text{negl} \]

\[\text{Decommit} \mathcal{C}_R(\tau, r_A) = M', \quad \text{when} \quad \tau \leftarrow \text{Commit} \mathcal{C}_R(M; r_A, r_B) \]

\[\text{Decommit} \mathcal{C}_R(\tau, r_A^2) = M_2, \quad \text{when} \quad \tau \leftarrow \text{Commit} \mathcal{C}_R^*(r_A, r_B) \]

\[\text{Game}_b. \]

\[\Pr \left[R = 1 \mid \text{Game}_b \right] - \Pr \left[R = 1 \mid \text{Game}_1 \right] = \text{negl} \]
Examples

• If \((g, g^x)\) a commitment to \(x\)?

• \(Ct = E(k, m)\) for a symmetric key encryption \(E\)
Examples

In practice, we use:

- To commit to message M, choose random, fixed-length r, send $H(r || M)$
- To open commitment, send r, M
- BINDING: Sender cannot find another M' to open.
HIDING: $H(M||r)$ “hides” M

$C \xrightarrow{c} RO \xrightarrow{e} R^*$

$c = H(M||r)$

CH

$C = H(M||r)$ or $H(M||r||r)$

R_0

<table>
<thead>
<tr>
<th>$\infty \cdots 0$</th>
<th>$r_0 \cdots 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\infty \cdots 1$</td>
<td>$r_0 \cdots 01$</td>
</tr>
</tbody>
</table>

"lazy sampling"
HIDING: $H(M||r)$ "hides" M

$\text{ch} \xRightarrow{RO} R^*$

$(r) \xrightarrow{c} \text{"lazy sampling"}$

$\Pr [R^* \text{'s first query is } (M_0||r) \text{ or } (M_1||r)] = \frac{1}{2^{|r|}}$

(second)

$\Pr [\text{second query is } (M_0||r) \text{ or } (M_1||r)] = \frac{1}{2^{|r|}-1}$

n^{th} query is $(M_0||r)$ or $(M_1||r) = \frac{1}{2^{|r|}-n}$

$|r|=n.$
$\Pr[R^x \text{ ever queries table on } (M, k) \text{ or } (N, k)] = \text{negl}(n)$

Examples

- Is (g, g^x) a commitment to x?

- $\text{Ct} = E(k, m)$ for a symmetric key encryption E

 Binding: $x < \text{order of group}$

 Hiding: $\begin{pmatrix} x_0, x_1 \\ g^{x_0}, g^{x_1} \end{pmatrix}$

 Not necessarily binding

 (OTP is not binding)

 $k \oplus m_1 = k_2 \oplus m_2$.
Examples

In practice, we use:

- To commit to message M, choose random, fixed-length r, send $H(r \ || \ M)$
- To open commitment, send r, M
- Receiver cannot fully recover M.
- Sender cannot find another M' to open.
Pedersen Commitments

- Public parameters: (p, g, h)
 - p: large prime (1024 bit)
 - g: generator
 - h: g^a for hidden a

- Protocol
 - To commit to x, C chooses random r and sends $(g^x h^r)$ to R.
 - To open, C sends x and r to R.

- Benefits:
 - One can prove many things about the committed value without opening it
Pedersen Commitments

• Unconditionally hiding
 • Given a commitment \(c \), every value \(x \) is equally likely to be the value committed in \(c \).
 • For example, given \(x, r, \) and any \(x' \), there exists \(r' \) such that \(g^x h^r = g^{x'} h^{r'} \), in fact \(r = (x-x') a^{-1} + r \mod q \).
Pedersen Commitments

• Computationally binding

 • Suppose committer sent $g^x h^r \mod p$ for some (x, r)

 • Now it finds $x' \neq x$ and r' such that $c = g^{x'} h^{r'}$.

 • This means that the sender "knows" $\log_g(h) = (x'-x) \cdot (r-r')^{-1}$.

 • This means: assuming DL is hard, the sender cannot open the commitment to a different value.
Application: Coin Tossing

- Alice and Bob want to decide on something by tossing a coin over a phone. How to do this securely?

- Solution: Alice commits to a random bit $b_A \leftarrow \{0, 1\}$, and sends $\text{Com}(b_A; r)$ to Bob

- Bob selects a random bit $b_B \leftarrow \{0, 1\}$ and sends it to Alice

- Alice decommits b_A

- Alice and Bob output $b_A \text{xor} b_B$