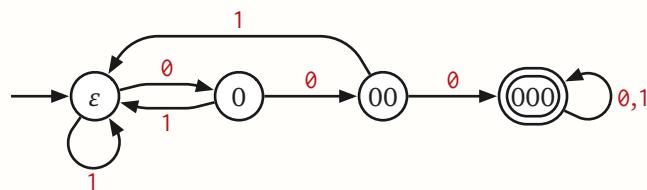


Describe deterministic finite-state automata that accept each of the following languages over the alphabet  $\Sigma = \{0, 1\}$ . Give the states of your DFAs mnemonic names, and describe briefly *in English* the meaning or purpose of each state.

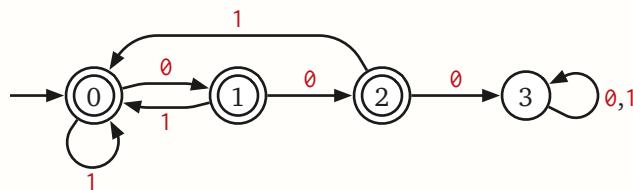
o. All strings.


**Solution:**



The purpose of the only state is to accept. ■

1. All strings containing the substring  $000$ .

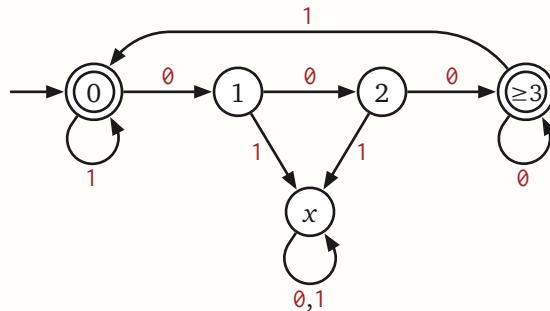

**Solution:**



- $\varepsilon$ : We didn't just read a  $0$ .
- $0$ : We've read one  $0$  since the last  $1$  or the start of the string.
- $00$ : We've read two  $0$ s since the last  $1$  or the start of the string.
- $000$ : We've read the substring  $000$ ; accept!

2. All strings *not* containing the substring  $000$ .

**Solution:**

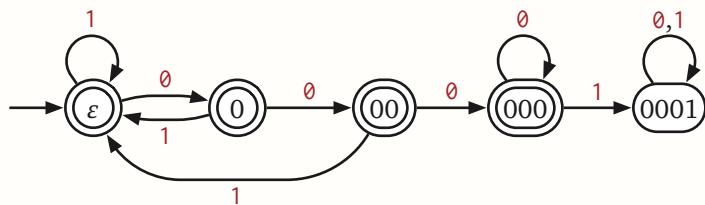



- $0$ : We didn't just read a  $0$ .
- $1$ : We've read one  $0$  since the last  $1$  or the start of the string.
- $2$ : We've read two  $0$ s since the last  $1$  or the start of the string.
- $3$ : We've read the substring  $000$ ; reject!

(Yes, these are exactly the same states as in problem 1, with different names.) ■

3. All strings in which every run of  $0$ s has length at least 3.

**Solution:**

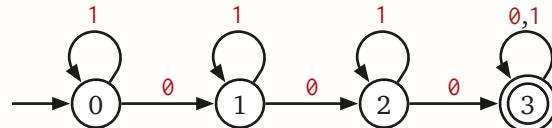



- 0: We did not just read a  $0$ .
- 1: We've read one  $0$  in the current run of  $0$ s.
- 2: We've read two  $0$ s in the current run of  $0$ s.
- $\geq 3$ : We've read at least three  $0$ s in the current run of  $0$ s.
- $x$ : We've already seen a run of  $0$ s of length less than 3; reject.

(It's okay to omit the dump state  $x$ , as long as you include the magic sentence "All unspecified transitions lead to a dump state.") ■

4. All strings in which the last  $1$  (if any) appears before the first substring  $000$  (if any).

**Solution:** A string is in this language if and only if it does not contain the substring  $0001$ .

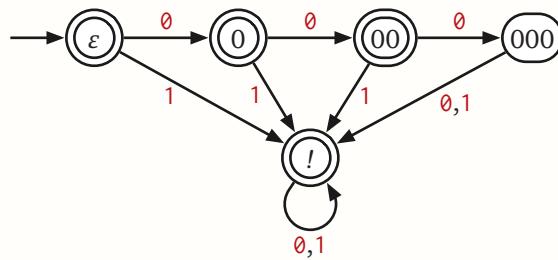



- $\epsilon$ : We did not just read a  $0$ .
- 0: We've read one  $0$  since the last  $1$  or the start of the string.
- 00: We've read two  $0$ s since the last  $1$  or the start of the string.
- 000: We've read at least three  $0$ s since the last  $1$  or the start of the string.
- 0001: We've read the substring  $0001$ ; reject.

(Again, it's okay to omit the dump state  $0001$ , as long as you include the magic sentence "All unspecified transitions lead to a dump state.") ■

5. All strings containing at least three  $0$ s.

**Solution:**



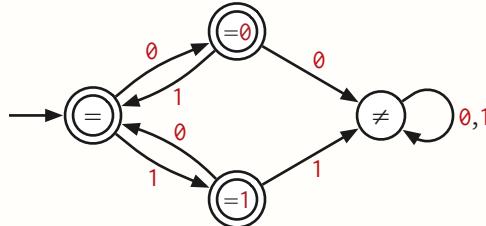

- 0: We've read no  $0$ s.
- 1: We've read one  $0$ .
- 2: We've read two  $0$ s.
- 3: We've read at least three  $0$ s; accept.

■

6. Every string except  $000$ . [Hint: Don't try to be clever.]

**Solution:**



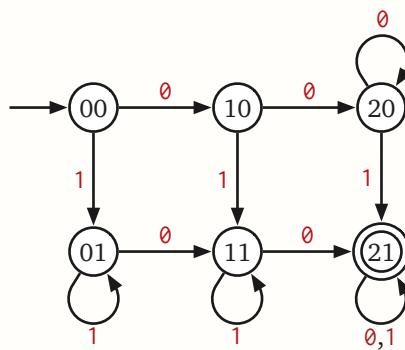

- $\epsilon$ : We haven't read anything yet.
- 0: Input so far is  $0$ .
- 00: Input so far is  $00$ .
- 000: Input so far is  $000$ .
- $!$ : Input string is not  $000$ ; accept!

■

## Harder problems to think about later:

7. All strings  $w$  such that *in every prefix of  $w$ , the number of 0s and 1s differ by at most 1.*

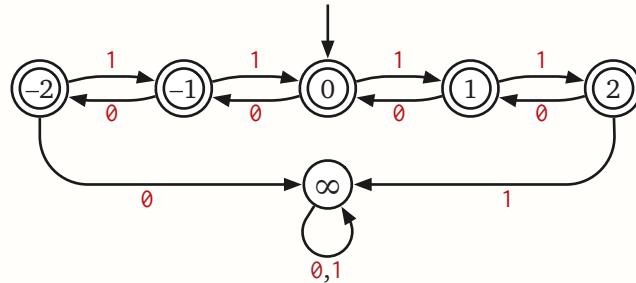
**Solution:** Equivalently, strings in which every even-length prefix has the same number of 0s and 1s.




- =: We've read an even-length prefix with the same number of 0s and 1s
- =0: We've read an even-length prefix with the same number of 0s and 1s, followed by a 0.
- =1: We've read an even-length prefix with the same number of 0s and 1s, followed by a 1.
- ≠: We've read an even-length prefix with different numbers of 0s and 1s; reject.

■

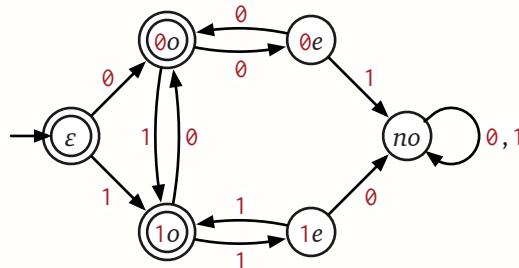
8. All strings containing at least two 0s and at least one 1.


**Solution:**



Each state is labeled with a pair of integers. The first integer indicates the number of 0s read so far (up to 2), and the second indicates the number of 1s read so far (up to 1). This DFA is the result of a standard product construction. ■

9. All strings  $w$  such that *in every prefix of  $w$ , the number of 0s and 1s differ by at most 2.*

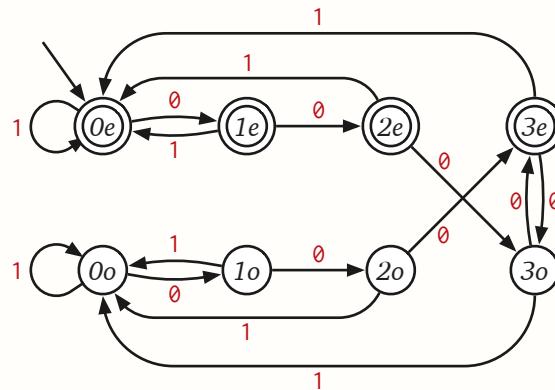

**Solution:**



The fail state  $\infty$  indicates that we have read some prefix where the number of 0s and 1s differ by more than 2. Each of the other states states  $-2, -1, 0, 1, 2$  indicates the number of 1s minus the number of 0s of the prefix read so far. ■

10. All strings in which every run has odd length. (For example,  $0001$  and  $100000111$  and the empty string  $\epsilon$  are in this language, but  $000000$  and  $001000$  are not.)

**Solution:**




- $\epsilon$ : We haven't read anything yet.
- $0o$ : The prefix we have read so far ends with an odd-length run of 0s, and all previous runs have odd length.
- $0e$ : The prefix we have read so far ends with an even-length run of 0s, and all previous runs have odd length.
- $1o$ : The prefix we have read so far ends with an odd-length run of 1s, and all previous runs have odd length.
- $1e$ : The prefix we have read so far ends with an even-length run of 1s, and all previous runs have odd length.
- $no$ : We have read a complete run with even length; reject.

(Again, it's okay to omit the dump state  $no$ , as long as you include the magic sentence "All unspecified transitions lead to a dump state.") ■

\*11. All strings in which the substring **000** appears an even number of times. (For example, **01100** and **000000** and the empty string  $\epsilon$  are in this language, but **00000** and **001000** are not.)

**Solution:**



Each state is labeled with an integer from 0 to 3, indicating how many consecutive **0**s we have just read, and a letter **e** or **o**, indicating whether the number of **000** substrings we have read so far is even or odd. ■