CS/ECE 374 A Lab 1b Solutions Spring 2026

Give regular expressions for each of the following languages over the binary alphabet {0,1}. (For
extra practice, find multiple regular expressions for each language.)

0. All strings.

Solution: (0 + 1)*
Repeatedly write an arbitrary symbol. |

Solution: (1+0)*

Union is symmetric. [|

Solution: (0*1%)*

Repeatedly write any number of 0s followed by any number of 1s. [|

Solution: 1*(00* 11*)*0*
Write any number of 1s, then repeatedly write any positive number of 0s followed
by any positive number of 1s, and finally write any number of 0s. |

Solution: (1*0)*1*

Write any number of 1s before each 0, and again at the end. [|

Solution: (00+ 01+ 1)*(¢+0) [|

We can do this all day; every regular language is described by an infinite number of regular
expressions!

1. All strings containing the substring 000.

Solution: (0+ 1)*000(0+ 1)*

Any string can appear before or after 000.]

2. All strings not containing the substring 000.

Solution: (1+014001)*(e+ 0+ 00)

Every 1 is immediately preceded by zero, one, or two 0s. |

Solution: (¢+ 0+ 00)(1(e + 0+ 00))*

Alternate between 1s and groups of at most two 0s. [|

Solution: 1*((0 4+ 00)11*)*(¢ + 0 + 00)

Alternate between runs of 1s and runs of at most two 0s. |

CS/ECE 374 A Lab 1b Solutions Spring 2026

3. All strings in which every run of 0s has length at least 3.

Solution: (1 + 0000*1)*(¢ + 0000*)

Write either no 0s or at least three 0s just before each 1, and again at the end. H

Solution: (1 + 0000*)*

Whenever you write one 0, write at least three 0s. [|

Solution: 1*(0000*11%)*(e + 0000*)

Alternate between runs of at least three 0s and arbitrary runs of 1s, possibly with
an extra run of 1s at the beginning and (at least three) extra @s at the end. |

4. All strings in which the last 1 appears before the first substring 000.

Solution: (1+01+001)*0*

Each 1 is immediately preceded by at most two 0s, but there can be any number of
0s after the last 1.]

5. All strings containing at least three 0s.

Solution: (0+1)*0(0+1)"0(0+1)*0(0+1)*

Any string can appear before, between, or after the three 0s.]

Solution (clever): 1*01*01*0 (0 + 1)*

Any number of 1s can appear before or between the first three s, and any string
can appear after the first three 0s. [|

Solution (clever): (0+ 1)*01*01%01*
Look at the last three 0s. [|

6. Every string except 000. [Hint: Don'’t try to be clever.]

Solution: Every string w 7 000 satisfies one of three conditions: Either |w| < 3, or
|w| = 3 and w # 000, or |w| > 3. The first two cases include only a finite number of
strings, so we just list them explicitly, each case on one line. The expression on the
last line includes all strings of length at least 4.

€E+0+1+004+01+10411
+0014+0104+011+100+101+ 1104+ 111
+(14+0)(1+0)(1+0)(1+0)(1+0) -

Solution (clever): &+ 0+ 00+ (1+01+001+000(1 +0))(1 +0)*]

CS/ECE 374 A Lab 1b Solutions Spring 2026

Work on these later:

7. All strings w such that in every prefix of w, the numbers of 0s and 1s differ by at most 1.

Solution: Equivalently, strings in which every even-length prefix has the same number
of 0s and 1s:
(@14+10)(0+1+¢)

*8. All strings containing at least two @s and at least one 1.

Solution: There are three possibilities for how the three required symbols are ordered:

e Contains a 1 before two 0s: (e+1)1(0+1)*0(0+1)0(0+1)*
e Contains a 1 between two 0s: (0 +1)*0(0+1)*1(0+1)0(0+1)*
e Contains a 1 after two 0s: (@+1)o(e+1)*0(0+1)" 1(0+1)*

So putting these cases together, we get the following:

(e+1)"1(0+1)*0(0+1)0(0+1)*
+(@+1)e(@+1)"1(0+1)0(0+1)"
+(@+1)e@+1)0(@+1)1(0+1)"

Solution: There are three possibilities for how such a string can begin:

e Start with 00, then any number of 0s, then 1, then anything.
e Start with 01, then any number of 1s, then 0, then anything.

e Start with 1, then a substring with exactly two 0s, then anything.

All together: 000*1(0+1)* + 011*0(0 + 1)* + 11*01*0(0 + 1)*
Or equivalently: (000*1 + 011*0 + 11*01%0)(0 +1)* n

Solution (clever): (0+ 1)* (1 01*0+011*0 4+ 01*01) (0+1)* [|

9. All strings in which every run has odd length.

Solution: Let L denote our target language. Let A denote the set of all odd-length
runs of 0s, and let B denote the set of all odd-length runs of 1s. These languages have
simple regular expressions

A=(00)0 B=(11)"1

Every binary string alternates between runs of @s and runs of 1s; we are interested
in strings that alternate between odd runs of 0s and odd runs of 1s. We can build a
regular expression for L by first considering all strings of alternating As and Bs, and

CS/ECE 374 A Lab 1b Solutions Spring 2026

then substituting the regular expressions for A and B:

L = (B+¢)(AB) (A+¢)
= ((11)*1 +£) ((00)*0 (11)*1)* ((20)*0 + ¢)

*10. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

Solution (from the future): Build the six-state DFA that accepts this language, and
then convert that DFA into an equivalent regular expression. Seriously, this is the
right way to do it; we just don’t have the tools yet. [|

Solution (the hard way): Call this language L, and let w be any string in L. Call
a non-empty substring of w balanced if it has the same number of 0s and 1s. Our
high-level strategy is to decompose w € L into as many balanced substrings as possible,
followed by at most one unbalanced suffix. We refer to these substrings as chunks.

For example, The string
w=20011110101001101000010101111010101 € L
consists of four balanced chunks and one unbalanced chunk:
w=20011-11010100-110100-00101011-11010101

Each of the chunks 0011, 11010100, 110100, 00101011, and 11010101 is contained
in L.

Let B be the set of all possible balanced chunks, and let U be the set of all possible
unbalanced chunks. Let B, be the set of all balanced chunks that start with 9, and

let B, be the set of all balanced chunks that start with 1, so that B = B, + B;. Similarly
split U into subsets U, and U, by first character.

Now we observe that a string x is in B, if and only if x satisfies the following
conditions:

¢ x has the same number of @s and 1s (so |x| must be even)

* Every non-empty proper prefix of x has either 1 or 2 more 0s than 1s.
(If a strong x satisfies the first condition but not the second, then either x has a prefix
that is too unbalanced, or x has a balanced prefix, which implies that we can split x
into smaller balanced chunks.) Let’s try to build a string x € B, one symbol at a time:

 The first symbol in x must be 9, and that cannot be the last symbol of x.

e If the second symbol of x is 1, that’s also the last symbol of x. Otherwise, the
second symbol is 0, and that cannot be the last symbol of x (because x must be
balanced).

CS/ECE 374 A Lab 1b Solutions Spring 2026

* If x begins with 00, the third symbol must be a 1 (or we’d have a prefix with too
many 0s), and that cannot be the last symbol of x.

e If x begins with 001, either the fourth and last symbol is 1, or the next two
symbols are 01 and those cannot be the last symbols of x.

* Eventually x must end with 1.

In short, every string in B, consists of a single 9, followed by any number of 01s,
followed by a single 1; equivalently,

B, = 0(01)*1.
Similar reasoning implies

B, =1(10)*0
U, = 0(01)*(¢ + 0)
U, = 1(10) (e + 1)

and therefore

B = B,+B; = 0(01)"1+1(10)*0
U = U,+U, o(e1)* (e +0)+1(10)" (e + 1)

Finally, every string in L consists of an arbitrary number of balanced chunks, followed
by at most one unbalanced chunk, so
L=B*(e+U)
= (B@ +B1)*(8+U@ +U1)
= (0(01)*1+1(10)*0)" (& +0(01)*(0 + £) + 1(10)*(1 +£))

Whew! [|

CS/ECE 374 A Lab 1b Solutions Spring 2026

*11. All strings in which the substring 000 appears an even number of times.

Solution: Let L denote our target language.

Every string in {0, 1}* alternates between (possibly empty) runs of 0s and individual
1s; that is, {0, 1}* = (0*1)*0*. Trivially, every 000 substring is contained in some run
of 0s. Our strategy is to consider which runs of @s contain an even or odd number of
000 substrings.

* Let X denote the set of all strings in 0* with an even number of 000 substrings. In
particular, we have ¢ € X. We easily observe that X = {¢" | n < 1 or n is even}
and thus

X =0+ (00)*

Notice that the subexpression (00)* includes the empty string, so we don’t need
to include it explicitly in our regular expression.

* Let Y denote the set of all strings in 0* with an odd number of 000 substrings.
We easily observe that Y = {0" | n > 1 and n is odd} and thus

Y = 000(00)*
By design, we have 0" = X +Y, and therefore
{0,1}* = (0*1)"0* = (X+Y))'(X+Y)

We are designing a regular expression for the set of binary strings with an even number
of runs of 0sin Y.

The design problem is easier if we treat X and Y as new symbols, and work over
the alphabet {X, Y, 1} instead of the original alphabet {0, 1}. So let L’ be the language
of strings in {X,Y,1}* that match the regular expression ((X + Y)1)*(X +Y) and
contain an even number of Y's.

e Let Z denote the set of all strings in {X,Y, 1}* that start with Y, end with Y, and
otherwise alternate between X and 1.

Z=Y(X)*1Y
Then we have

L'=(X+2)1)*(X+2)
=((x+Y(x)17)1)" (X + Y(1X)*1Y)

Substituting our earlier regular expressions for X and Z, we conclude that

L = ((0 + (00)* + 000(00)*(1(0 + (00)*))*1000(00)*) 1)"
(0 + (00)* + 000(00)*(1(0 + (00)*))*1000(00)*)

Whew! []

