
CS/ECE 374 A Homework 1 Solutions Spring 2026

1. For any string w ∈ {0,1}∗, let sink(w) be the function defined recursively as follows:

sink(w) :=











w if |w| ≤ 1

a · sink(1x) if w= 1ax for some a ∈ {0,1} and x ∈ {0,1}∗

0 · sink(ax) if w= 0ax for some a ∈ {0,1} and x ∈ {0,1}∗

(a) Prove that |sink(w)|= |w|.

Solution: Let w be an arbitrary string.
Assume |sink(y)|= |y| for every string y such that |y|< |w|.
There are three cases to consider (mirroring the definition of sink):
• If |w| ≤ 1, then

|sink(w)|= |w| by definition of sink

• If w= 1ax for some a ∈ {0,1} and x ∈ {0,1}∗, then

|sink(w)|= |sink(1ax)| because w= 1ax

= |a · sink(1x)| by definition of sink

= 1+ |sink(1x)| by definition of |·|
= 1+ |1x | by the inductive hypothesis
= 2+ |x | by definition of |·|; arithmetic
= |1a|+ |x | by definition of |·|
= |1ax | because |y • z|= |y|+ |z|
= |w| because w= 1ax

• Finally, if w= 0ax for some a ∈ {0,1} and x ∈ {0,1}∗, then

|sink(w)|= |sink(0ax)| because w= 0ax

= |0 · sink(ax)| by definition of sink

= 1+ |sink(ax)| by definition of |·|
= 1+ |ax | by the inductive hypothesis
= 2+ |x | by definition of |·|; arithmetic
= |0a|+ |x | by definition of |·|
= |0ax | because |y • z|= |y|+ |z|
= |w| because w= 0ax

In all cases, we conclude that |sink(w)|= |w|. ■

Rubric: 4 points: Standard induction rubric (scaled)

1

CS/ECE 374 A Homework 1 Solutions Spring 2026

(b) Prove that if #(1, w)≥ 1, then sink(w) = x • 1 for some string x .

Solution: Let w be an arbitrary string such that #(1, w)≥ 1.
Assume, for all strings y such that |y|< |w| and #(1, y)≥ 1, we have sink(y) =
x • 1 for some string x .
There are three cases to consider:
• Suppose |w| ≤ 1. Then, w= 1, because #(1, w)≥ 1. Further,

sink(w) = w by definition of sink

= 1 because w= 1

= ϵ • 1 by definition of •

Therefore, sink(w) = x • 1 with x = ϵ.
• If w= 1a y for some a ∈ {0,1} and y ∈ {0,1}∗, then

sink(w) = sink(1a y) because w= 1a y

= a · sink(1y)

We have #(1,1y) ≥ 1 by the definition of #. By the inductive hypothesis,
sink(1y) = z • 1 for some string z. Therefore, sink(w) = x • 1 with x = az.

• Finally, if w= 0a y for some a ∈ {0,1} and y ∈ {0,1}∗, then

sink(w) = sink(0a y) because w= 0a y

= 0 · sink(a y)

We have #(1, a y) ≥ 1 by the definition of # and basic arithmetic. By
the inductive hypothesis, sink(a y) = z • 1 for some string z. Therefore,
sink(w) = x • 1 with x = 0z.

In all cases, we conclude that sink(w) = x • 1 for some string x . ■

Rubric: 3 points: standard induction rubric (scaled)

2

CS/ECE 374 A Homework 1 Solutions Spring 2026

(c) Prove that if sink(w) = x • 1 for some string x , then #(1, w)≥ 1.

Solution: Let w be an arbitrary string such that sink(w) = x • 1 for some string
x .
Assume, for all strings y such that |y|< |w| and sink(w) = x • 1 for some string
x , we have #(1, w)≥ 1. There are three cases to consider:
• If |w| ≤ 1, then

sink(w) = w by definition of sink

Therefore, w= x •1 for some string x . Because |w| ≤ 1, we have w= 1 and
#(1, w) = 1.

• If w = 1a y for some a ∈ {0,1} and y ∈ {0,1}∗, then #(1, w) ≥ 1 by
definition of #. We’re already done with this case!

• Finally, if w= 0a y for some a ∈ {0,1} and y ∈ {0,1}∗, then

sink(w) = sink(0a y) because w= 0a y

= 0 · sink(a y)

By assumption, sink(w) = x • 1 for some string x beginning with 0. Define
z so that x = 0z. We have sink(a y) = z • 1. Therefore,

#(1, w) = #(1,0a y) because w= 0a y

= #(1, a y) by definition of #

≥ 1 by the inductive hypothesis

In all cases, we conclude that #(1, w)≥ 1. ■

Rubric: 3 points: standard induction rubric (scaled)

3

CS/ECE 374 A Homework 1 Solutions Spring 2026

2. Consider the following 3 sets of strings L0, L1, L2 ⊆ {0,1}∗ defined (mutually) recursively
as follows:

• The empty string ϵ is in L0.
• For any i ∈ {0, 1,2} and any string x ∈ Li, the string 0x is in Li−1 (mod 3) and the

string 1x is in Li+1 (mod 3).
• These are the only strings in L0, L1, and L2.

(a) Prove that for each i ∈ {0,1, 2} and string w ∈ Li, we have #(1, w) ≡ #(0, w) + i
(mod 3).

Solution: Let i be an arbitrary member of {0, 1,2}, and let w be an arbitrary
string in Li .
Assume, for any j ∈ {0, 1,2} and any string x ∈ L j where |x | < |w|, that
#(1, x)≡ #(0, x) + j (mod 3).
There are three cases to consider.
• Suppose w = ϵ. We must have i = 0, because L1 and L2 contain only

non-empty strings. Then,

#(1, w)≡ #(1,ϵ) because w= ϵ

≡ 0 by definition of #
≡ #(0,ϵ) + 0 by definition of #; arithmetic
≡ #(0, w) + i (mod 3) because i = 0 and w= ϵ

• Suppose w= 0x for some j ∈ {0, 1,2} and string x ∈ L j . By the definitions
above, i = j − 1 (mod 3).

#(1, w)≡ #(1,0x) because w= 0x

≡ #(1, x) by definition of #

≡ #(0, x) + j by the inductive hypothesis
≡ #(0,0x) + j − 1 by definition of #; arithmetic
≡ #(0, w) + i (mod 3) because i = j − 1 (mod 3) and w= 0x

• Suppose w= 1x for some j ∈ {0, 1,2} and string x ∈ L j . By the definitions
above, i = j + 1 (mod 3).

#(1, w)≡ #(1,1x) because w= 1x

≡ #(1, x) + 1 by definition of #

≡ #(0, x) + j + 1 by the inductive hypothesis
≡ #(0,1x) + j + 1 by definition of #; arithmetic
≡ #(0, w) + i (mod 3) because i = j + 1 (mod 3) and w= 1x

4

CS/ECE 374 A Homework 1 Solutions Spring 2026

In all three cases, we conclude that #(1, w)≡ #(0, w) + i (mod 3). ■

Rubric: 5 points: standard induction rubric (scaled)

5

CS/ECE 374 A Homework 1 Solutions Spring 2026

(b) Prove that for each i ∈ {0,1, 2}, the set Li contains every string w ∈ {0,1}∗ such that
#(1, w)≡ #(0, w) + i (mod 3).

Solution: Let i be an arbitrary member of {0, 1,2}, and let w be an arbitrary
string in {0,1}∗ such that #(1, w)≡ #(0, w) + i (mod 3).

Assume, for any j ∈ {0,1, 2}, set L j contains every string x such that |x |< |w|
and #(1, x)≡ #(0, x) + j (mod 3).

There are three cases to consider.
• Suppose w= ϵ.

#(1, w)≡ #(1,ϵ) because w= ϵ

≡ 0 by definition of #
≡ #(0,ϵ) + 0 by definition of #; arithmetic
≡ #(0, w) + 0 (mod 3) because w= ϵ

Indeed, w ∈ L0 by definition.
• Suppose w= 0x for some string x . Then,

#(1, x)≡ #(1,0x) by definition of #

≡ #(1, w) because w= 0x

≡ #(0, w) + i by definition of i and w

≡ #(0,0x) + i because w= 0x

≡ #(0, x) + i + 1 (mod 3) by definition of #; arithmetic

By the inductive hypothesis, x ∈ Li+1 (mod 3). Therefore, w= 0x is in Li .
• Suppose w= 1x for some string x . Then,

#(1, x)≡ #(1,1x)− 1 by definition of #

≡ #(1, w)− 1 because w= 1x

≡ #(0, w) + i − 1 by definition of i and w

≡ #(0,1x) + i − 1 because w= 1x

≡ #(0, x) + i − 1 (mod 3) by definition of #; arithmetic

By the inductive hypothesis, x ∈ Li−1 (mod 3). Therefore, w= 1x is in Li .
In all three cases, we conclude w ∈ Li . ■

Rubric: 5 points: standard induction rubric (scaled). The modulo arithmetic is more detailed
than necessary for full credit.

6

CS/ECE 374 A Homework 1 Solutions Spring 2026

⋆3. Practice only. Do not submit solutions.

For each non-negative integer n, we recursively define two binary trees Pn and Vn,
called the nth Piṅgala tree and the nth Virahān. ka tree, respectively.

• P0 and V0 are empty trees, with no nodes.
• P1 and V1 each consist of a single node.
• For any integer n≥ 2, the tree Pn consists of a root with two subtrees; the left subtree

is a copy of Pn−1, and the right subtree is a copy of Pn−2.
• For any integer n≥ 2, the tree Vn is obtained from Vn−1 by attaching a new right child

to every leaf and attaching a new left child to every node that has only a right child.

(a) Prove that the tree Pn has exactly Fn leaves.

Solution: To make the presentation simpler, let me define some notation. Let ϵ
denote the empty binary tree, and let (L,R) denote the non-empty binary tree
with left subtree L and right subtree R. Let • = (ϵ,ϵ) denote the binary tree
consisting of a single node. Then we can define Piṅgala trees more succinctly as
follows:

Pn =











ϵ if n= 0

• if n= 1

(Pn−2, Pn−1) otherwise
Now we’re ready for the proof:

Proof: Let n be an arbitrary non-negative integer.
Assume #leaves(Pm) = Fm for every non-negative integer m< n.
There are three cases to consider.
• Suppose n= 0. P0 = ϵ has no nodes, so #leaves(P0) = 0= F0.
• Suppose n= 1. The single node in P1 = • is a leaf, so #leaves(P1) = 1= F1.
• Finally, suppose n≥ 2. The root of Pn is not a leaf, so

#leaves(Pn) = #leaves((Pn−2, Pn−1)) by definition of Pn

= #leaves(Pn−2) +#leaves(Pn−1) root of Pn is not a leaf
= Fn−2 + Fn−1 by ind. hyp.
= Fn by definition of Fn

In all cases, we conclude that #leaves(Pn) = Fn. ■

Rubric: Standard induction rubric. Weak induction cannot work here.

7

CS/ECE 374 A Homework 1 Solutions Spring 2026

(b) Prove that the tree Vn has exactly Fn leaves.
[Hint: You need to prove a stronger result.]

Solution: To simplify the presentation, let #(d, T) denote the number of nodes
in the tree T with exactly d children. In particular, #(0, T) is the number of
leaves in T . We need to prove that #(0, Vn) = Fn for all n≥ 0.

This claim is trivial when n= 0. For all n> 0, I’ll actually prove the stronger
claim that #(0, Vn) = Fn and #(1, Vn) = Fn−1.

Let n be an arbitrary positive integer. Assume for all positive integers m< n
that #(0, Vm) = Fm and #(1, Vm) = Fm−1. There are two cases to consider,
mirroring the definition of Vn.
• Suppose n= 1. Then by definition, V1 has a single node, which is a leaf, so

#(0, Vn) = #(0, V1) = 1 = F1 = Fn

#(1, Vn) = #(1, V1) = 0 = F0 = Fn−1

• Suppose n ≥ 2. Then each leaf of Vn is a child of either a leaf of Vn−1 or
a node with one child in Vn−1. Conversely, each node with zero or one
children in Vn−1 is the parent of exactly one leaf in Vn. So the inductive
hypothesis implies

#(0, Vn) = #(0, Vn−1) +#(1, Vn−1) = Fn−1 + Fn−2 = Fn.

Similarly, each node with one child in Vn is a leaf in Vn−1, so the inductive
hypothesis implies #(1, Vn) = #(0, Vn−1) = Fn−1.

In both cases, we conclude that #(0, Vn) = Fn and #(1, Vn) = Fn−1. ■

Rubric: Standard induction rubric. We do need to consider the case n = 0 outside the main
induction argument; our stronger claim is false when n= 0, because F−1 = 1!

8

CS/ECE 374 A Homework 1 Solutions Spring 2026

(c) Prove that the trees Pn and Vn are identical, for all n≥ 0.

Solution: Let T.left and T.right denote the left and right subtrees of any non-
empty tree T . For any tree T , we recursively define

sprout(T) =











• if T = ϵ

(ϵ,•) if T = •
(sprout(T.left), sprout(T.right)) otherwise

Then we can rewrite the definition of Vn as Vn = sprout(Vn−1) for all n≥ 1.
Let n be an arbitrary non-negative integer. Assume for all non-negative

integers m< n that Pn = Vn. There are four cases to consider.
• P0 = ϵ and V0 = ϵ by definition.
• P1 = • and V1 = • by definition.
• P2 = (P0, P1) = (ϵ,•) and V2 = sprout(V1) = sprout(•) = (ϵ,•) by definition.
• Finally, if n≥ 3, we have

Vn = sprout(Vn−1) by definition
= sprout(Pn−1) by the inductive hypothesis
= sprout((Pn−3, Pn−2)) by definition of Pn

= sprout((Vn−3, Vn−2)) by the inductive hypothesis (twice)
= (sprout(Vn−3), sprout(Vn−2)) by definition of sprout, since n≥ 4

= (Vn−2, Vn−1) by definition of Vn

= (Pn−2, Pn−1) by the inductive hypothesis (twice)
= Pn by definition of Pn

In all cases, we conclude that Vn = Pn. ■

Rubric: Standard induction rubric. Weak induction cannot work here. We need to consider the
case n= 2 separately, because the main inductive proof refers to Vn−3 and Pn−3.

Watch for switching between Pm and Vm without explicitly invoking the induction hypothesis.
Yes, we really do have to invoke the induction hypothesis five times!

9

