CS/ECE 374 A Homework 1 Solutions Spring 2026

1. For any string w € {0, 1}*, let sink(w) be the function defined recursively as follows:

w iflw <1
sink(w) :={ a-sink(1x) if w=1ax for some a € {0,1} and x € {0, 1}*

0 -sink(ax) if w= 0ax for some a € {0,1} and x € {0, 1}*

(@) Prove that [sink(w)| = |w|.

Solution: Let w be an arbitrary string.
Assume |sink(y)| = |y| for every string y such that |y| < |w|.
There are three cases to consider (mirroring the definition of sink):

e If lw| <1, then
|sink(w)| = |w| by definition of sink

e If w=1lax for some a € {0,1} and x € {0, 1}*, then

|sink(w)| = |sink(1ax)| because w = Tax
=|a - sink(1x)| by definition of sink
=1+ [sink(1x)] by definition of |-|
=14+ |1x| by the inductive hypothesis
=2+ |x| by definition of |-|; arithmetic
= |1a| + |x| by definition of |-|
=|lax| because |y * z| = |y| + |z|
= |w| because w = Tax

* Finally, if w = @ax for some a € {0, 1} and x € {0, 1}*, then

|sink(w)| = |sink(0ax)| because w = Qax
=10 - sink(ax))| by definition of sink
=1+ [|sink(ax))| by definition of |-|
=1+ |ax]| by the inductive hypothesis
=2+ |x| by definition of |-|; arithmetic
= |0a| + | x| by definition of |-|
= |0ax| because |y * z| = |y| + |z|
= |w| because w = Qax
In all cases, we conclude that |sink(w)| = |w]|. [ ]

Rubric: 4 points: Standard induction rubric (scaled)




CS/ECE 374 A Homework 1 Solutions Spring 2026

(b) Prove that if #(1,w) > 1, then sink(w) = x ¢ 1 for some string x.

Solution: Let w be an arbitrary string such that #(1,w) > 1.

Assume, for all strings y such that |y| < |w| and #(1, y) = 1, we have sink(y) =
x ¢ 1 for some string x.

There are three cases to consider:

e Suppose |w| < 1. Then, w = 1, because #(1,w) > 1. Further,

sink(w) =w by definition of sink
=1 because w =1
=¢ge] by definition of

Therefore, sink(w) = x ¢ 1 with x = ¢.
e Ifw=1ay for some a € {0,1} and y € {0, 1}*, then

sink(w) =sink(1ay) because w = lay

=a-sink(1y)

We have #(1,1y) > 1 by the definition of #. By the inductive hypothesis,
sink(1y) =2 1 for some string 2. Therefore, sink(w) = x ¢ 1 with x = az.

e Finally, if w = 0ay for some a € {0,1} and y € {0, 1}*, then

sink(w) = sink(0ay) because w = 0ay
=0 -sink(ay)
We have #(1,ay) = 1 by the definition of # and basic arithmetic. By

the inductive hypothesis, sink(ay) = z ¢ 1 for some string z. Therefore,
sink(w) = x ¢ 1 with x = 0z.

In all cases, we conclude that sink(w) = x * 1 for some string x. [ |

Rubric: 3 points: standard induction rubric (scaled)




CS/ECE 374 A Homework 1 Solutions Spring 2026

(¢) Prove that if sink(w) = x 1 for some string x, then #(1,w) > 1.

Solution: Let w be an arbitrary string such that sink(w) = x * 1 for some string
X.

Assume, for all strings y such that |y| < |w| and sink(w) = x * 1 for some string
x, we have #(1,w) > 1. There are three cases to consider:

e If |w| <1, then
sink(w) =w by definition of sink

Therefore, w = x * 1 for some string x. Because |w| < 1, we have w = 1 and
#(1,w)=1.

e If w= lay for some a € {0,1} and y € {0,1}*, then #(1,w) = 1 by
definition of #. We're already done with this case!

* Finally, if w = 0ay for some a € {0,1} and y € {0, 1}*, then

sink(w) = sink(0ay) because w = 0ay

=0 -sink(ay)

By assumption, sink(w) = x ¢ 1 for some string x beginning with 0. Define
z so that x = 0z. We have sink(ay) =z ¢ 1. Therefore,

#(1,w) = #(1,0ay) because w = 0ay
=#(1,ay) by definition of #
>1 by the inductive hypothesis
In all cases, we conclude that #(1,w) > 1. [ |

Rubric: 3 points: standard induction rubric (scaled)




CS/ECE 374 A Homework 1 Solutions Spring 2026

2. Consider the following 3 sets of strings Ly, L, L, € {0, 1}* defined (mutually) recursively
as follows:
e The empty string ¢ is in L.

* For any i € {0,1,2} and any string x € L;, the string 0x is in L;_; (moq 3) and the
string 1x is in Li 11 (mod 3)-

* These are the only strings in Ly, L, and L.

(@) Prove that for each i € {0,1,2} and string w € L;, we have #(1,w) = #(0,w) +1i
(mod 3).

Solution: Let i be an arbitrary member of {0, 1,2}, and let w be an arbitrary
string in L;.

Assume, for any j € {0,1,2} and any string x € L; where |x| < [w], that
#(1,x) = #(0,x)+j (mod 3).

There are three cases to consider.

* Suppose w = ¢. We must have i = 0, because L; and L, contain only
non-empty strings. Then,

#(1,w)=#(01,¢) because w = ¢
=0 by definition of #
= #(0,e)+0 by definition of #; arithmetic
=#0,w)+1 (mod 3) becausei =0 and w =¢

* Suppose w = 0x for some j € {0, 1,2} and string x € L;. By the definitions
above, i = j—1 (mod 3).

#(1,w) = #(1,0x) because w = 0x
=#(1,x) by definition of #
=#(0,x)+j by the inductive hypothesis
=#(0,0x)+j—1 by definition of #; arithmetic

=#(0,w)+i (mod 3) becausei=j—1 (mod 3)andw = 0x

* Suppose w = 1x for some j € {0, 1,2} and string x € L;. By the definitions
above, i = j+1 (mod 3).

#(1,w) = #(1,1x) because w = 1x
=#(0,x)+1 by definition of #
=#0,x)+j+1 by the inductive hypothesis
=#(0,1x)+j+1 by definition of #; arithmetic

=#(0,w)+i (mod3) becausei=j+1 (mod3)andw=1x




CS/ECE 374 A

Homework 1 Solutions

Spring 2026

In all three cases, we conclude that #(1,w) = #(0,w) +i (mod 3).

Rubric: 5 points: standard induction rubric (scaled)




CS/ECE 374 A Homework 1 Solutions Spring 2026

(b) Prove that for each i € {0, 1,2}, the set L; contains every string w € {0, 1}* such that
#(1,w)=#(0,w) +1i (mod 3).

Solution: Let i be an arbitrary member of {0, 1,2}, and let w be an arbitrary
string in {0, 1}* such that #(1,w) = #(0,w) +i (mod 3).

Assume, for any j € {0, 1,2}, set L; contains every string x such that [x| < |w|
and #(1,x) = #(0,x) + j (mod 3).

There are three cases to consider.

e Suppose w = €.

#(1,w)=#(1,¢) because w = ¢
=0 by definition of #
=#(0,e)+0 by definition of #; arithmetic
=#(0,w)+0 (mod 3) because w = ¢

Indeed, w € L by definition.
e Suppose w = 0x for some string x. Then,

#(1,x)=#(01,0x) by definition of #
=#(01,w) because w = 0x
=#0,w)+i by definition of i and w
= #(0,0x) +1 because w = 0x

=#(0,x)+i+1 (mod3) by definition of #; arithmetic

By the inductive hypothesis, x € L; ;1 (moq 3)- Therefore, w = 0x is in L;.
* Suppose w = 1x for some string x. Then,

#(1,x)=#01,1x)—1 by definition of #
=#(,w)—1 because w = 1x
=#(O,w)+i—1 by definition of i and w
=#00,1x)+i—1 because w = 1x

=#(0,x)+i—1 (mod3) by definition of #; arithmetic

By the inductive hypothesis, x € L;_1 (104 3)- Therefore, w = 1x is in L;.

In all three cases, we conclude w € ;. |

Rubric: 5 points: standard induction rubric (scaled). The modulo arithmetic is more detailed
than necessary for full credit.




CS/ECE 374 A Homework 1 Solutions Spring 2026

*3. Practice only. Do not submit solutions.

For each non-negative integer n, we recursively define two binary trees P, and V,,
called the nth Pingala tree and the nth Virahanka tree, respectively.

e P, and V|, are empty trees, with no nodes.
* P, and V; each consist of a single node.

* For any integer n > 2, the tree P, consists of a root with two subtrees; the left subtree
is a copy of P,_;, and the right subtree is a copy of P,_,.

 For any integer n > 2, the tree V,, is obtained from V,_; by attaching a new right child
to every leaf and attaching a new left child to every node that has only a right child.

(@) Prove that the tree P, has exactly F,, leaves.

Solution: To make the presentation simpler, let me define some notation. Let ¢
denote the empty binary tree, and let (L,R) denote the non-empty binary tree
with left subtree L and right subtree R. Let e = (&, ¢) denote the binary tree
consisting of a single node. Then we can define Pingala trees more succinctly as
follows:

€ ifn=0

P,=1e ifn=1

(P,—5,P,_1) otherwise

Now we'’re ready for the proof:

Proof: Let n be an arbitrary non-negative integer.

Assume #leaves(P,,) = F,, for every non-negative integer m < n.

There are three cases to consider.
* Suppose n =0. Py = ¢ has no nodes, so #leaves(P,) = 0 = F,,.
* Suppose n = 1. The single node in P; = e is a leaf, so #leaves(P;) =1 =F;.
* Finally, suppose n > 2. The root of P, is not a leaf, so

#leaves(P,) = #leaves((P,_5,P,_1)) by definition of P,
= #leaves(P,_,) + #leaves(P,_,) root of P, is not a leaf
=F,_,+F,_4 by ind. hyp.
=F, by definition of F,,
In all cases, we conclude that #leaves(P,) = F,,. |

Rubric: Standard induction rubric. Weak induction cannot work here.




CS/ECE 374 A Homework 1 Solutions Spring 2026

(b) Prove that the tree V, has exactly F, leaves.
[Hint: You need to prove a stronger result.]

Solution: To simplify the presentation, let #(d, T) denote the number of nodes
in the tree T with exactly d children. In particular, #(0, T) is the number of
leaves in T. We need to prove that #(0,V,,) =F, for alln > 0.

This claim is trivial when n = 0. For all n > 0, I'll actually prove the stronger
claim that #(0,V,) = F, and #(1,V,)) = F,_;.

Let n be an arbitrary positive integer. Assume for all positive integers m < n
that #(0,V,,) = F,, and #(1,V,,) = F,,_;. There are two cases to consider,
mirroring the definition of V,,.

* Suppose n = 1. Then by definition, V; has a single node, which is a leaf, so

#00,V,) = #(0,V;) =1 =F, = F,
#(1,Vn) e #(1,‘/1) =0 FO B Fn—l

* Suppose n > 2. Then each leaf of V,, is a child of either a leaf of V,,_; or
a node with one child in V,,_;. Conversely, each node with zero or one
children in V,_; is the parent of exactly one leaf in V,,. So the inductive
hypothesis implies

#(O,Vn) == #(O,Vn_1)+#(1,Vn_1) == Fn—l +FTl—2 = FTl'

Similarly, each node with one child in V,, is a leaf in V,,_;, so the inductive
hypothesis implies #(1,V,,) = #(0,V,_1) = F,_;.

In both cases, we conclude that #(0,V,) =F,, and #(1,V,) =F,_;. [ ]

Rubric: Standard induction rubric. We do need to consider the case n = 0 outside the main
induction argument; our stronger claim is false when n = 0, because F_; = 1!




CS/ECE 374 A Homework 1 Solutions Spring 2026

(c) Prove that the trees P, and V,, are identical, for all n > 0.

Solution: Let T.left and T.right denote the left and right subtrees of any non-
empty tree T. For any tree T, we recursively define

° ifT=c¢
sprout(T) = { (g,9) ifT=e
(sprout(T.left), sprout(T.right)) otherwise

Then we can rewrite the definition of V,, as V,, = sprout(V,_;) for all n > 1.
Let n be an arbitrary non-negative integer. Assume for all non-negative
integers m < n that P, = V,,. There are four cases to consider.
e Py =¢ and V, = ¢ by definition.
e P, =e and V; = e by definition.
e Py =(Py,P;)=(g,9) and V,, = sprout(V;) = sprout(e) = (&, ) by definition.
e Finally, if n > 3, we have

V,, = sprout(V,_;) by definition
= sprout(P,_;) by the inductive hypothesis
= sprout( (P,_3, P,—2)) by definition of P,
= sprout((V,_3, V,—5)) by the inductive hypothesis (twice)
= (sprout(V,,_3),sprout(V,_,)) by definition of sprout, since n > 4
= Vo, V1) by definition of V,
= (P9, Pr_1) by the inductive hypothesis (twice)
=P, by definition of P,
In all cases, we conclude that V, = P,,. ]

Rubric: Standard induction rubric. Weak induction cannot work here. We need to consider the
case n = 2 separately, because the main inductive proof refers to V,_; and P,,_5.

Watch for switching between P,, and V,, without explicitly invoking the induction hypothesis.
Yes, we really do have to invoke the induction hypothesis five times!




