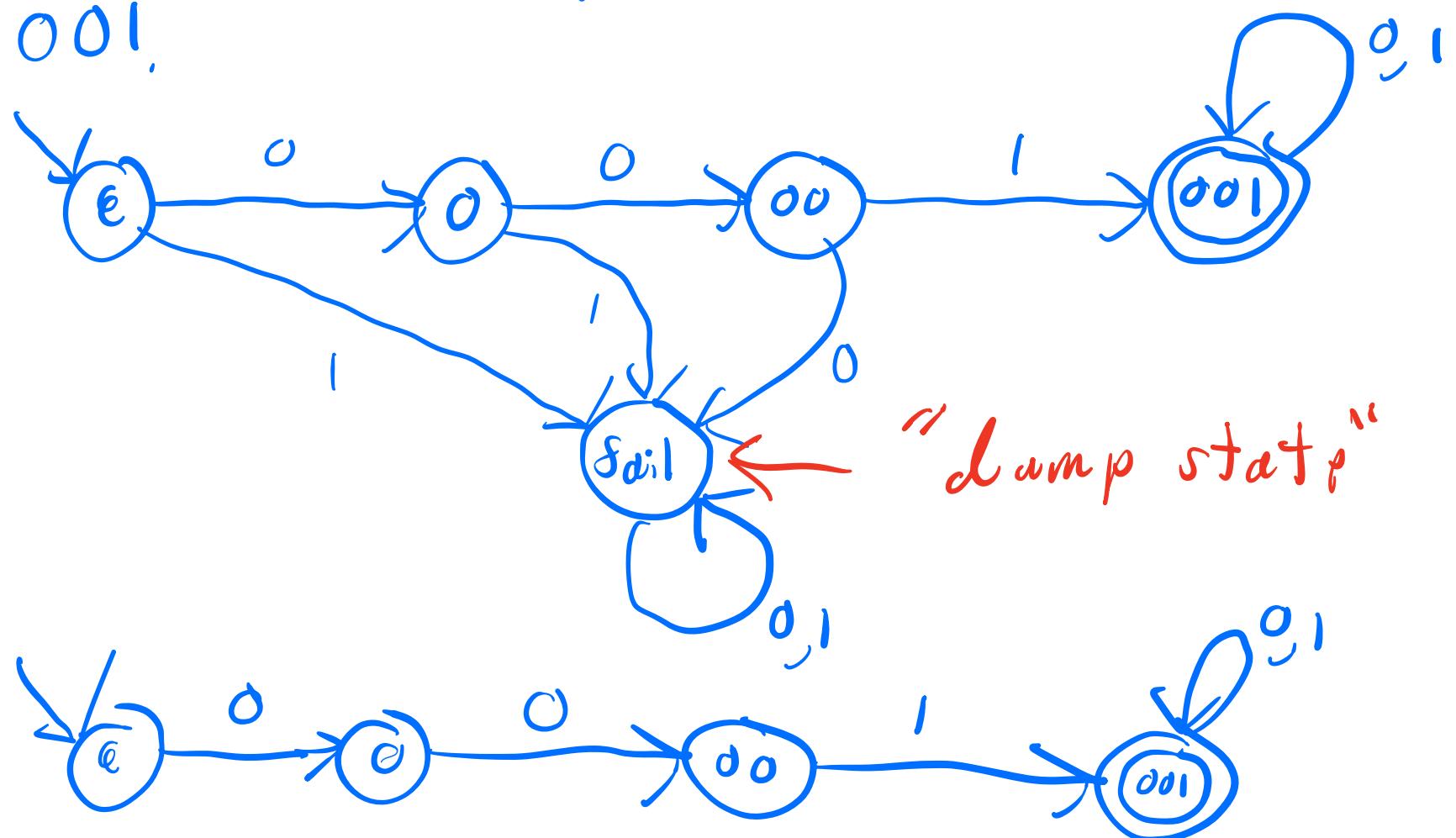


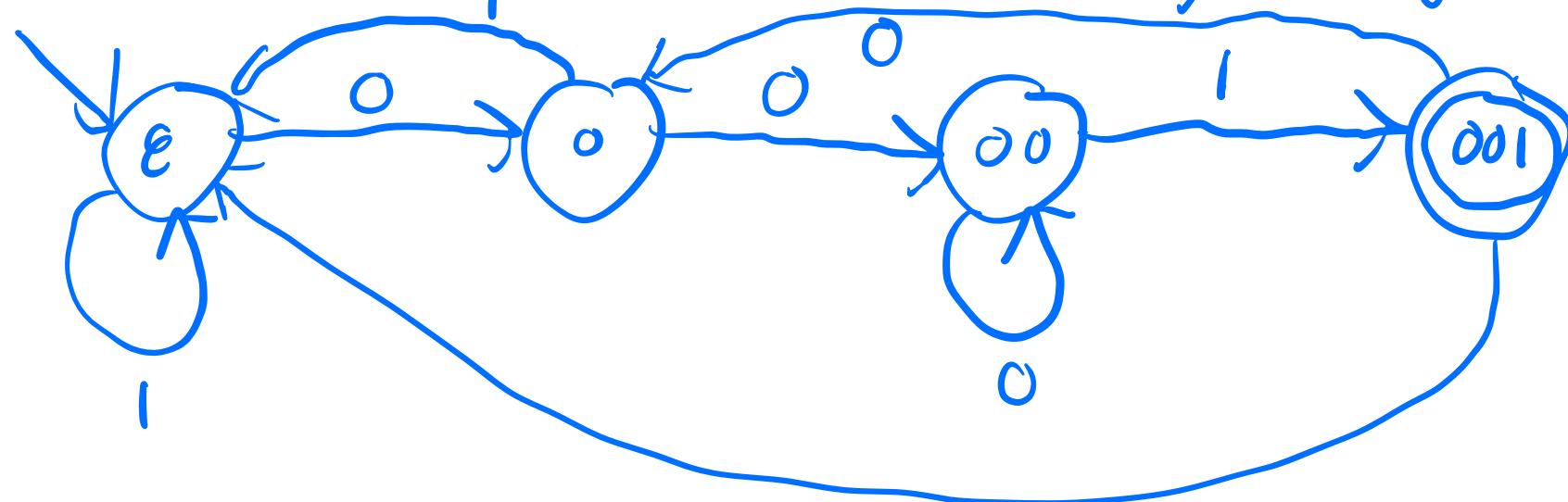
Mon Feb 2nd: 10th day registration dead line
Regular expression writing tips on website.

DFA Ex: All binary strings Beginning with 001.



No transition \Rightarrow go to dump state,
but you have to tell us you're
doing that!

Ex: All binary string that end with 001.
States: what we're currently ending with.



A DFA over a fixed alphabet Σ can be described as $M = (Q, \delta, s, A)$.

- Q : finite set of states
- $\delta: Q \times \Sigma \rightarrow Q$ the transition function
- $s \in Q$: start state
- $A \subseteq Q$: accept states

extended transition function $\delta^*: Q \times \Sigma^* \rightarrow Q$

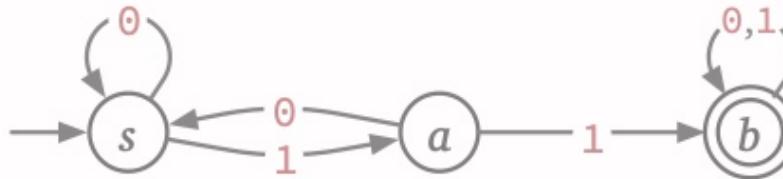
$$\delta^*(q, w) := \begin{cases} q & \text{if } w = \epsilon \\ \delta^*(\delta(q, a), x) & \text{if } w = ax \end{cases}$$

The language of / accepted by DFA M is

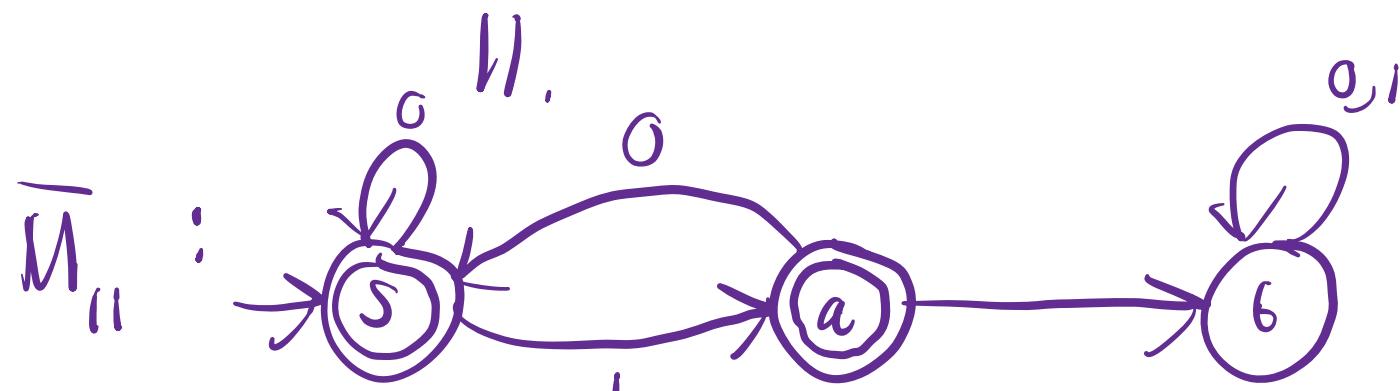
$$L(M) := \{w \mid M \text{ accepts } w\}$$

$$= \{w \mid \delta^*(s, w) \in A\}$$

Ex: M_{11} :



$L(M_{11})$: binary strings with substring 11.

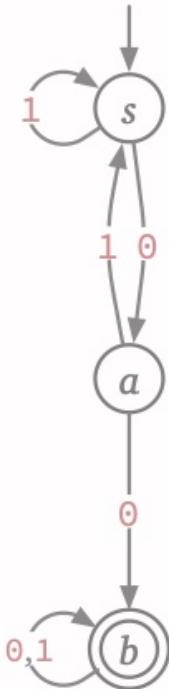


$$L(\bar{M}_{11}) = \overline{L(M_{11})} = \epsilon^* \setminus L(M_{11})$$

Given machine $M = (Q, \Sigma, s, A)$, there is a machine $\bar{M} = (Q, \Sigma, s, \bar{A})$ with $\bar{A} = Q \setminus A$

$$\text{s.t. } L(\bar{M}) = \overline{L(M)}$$

M_{00} :



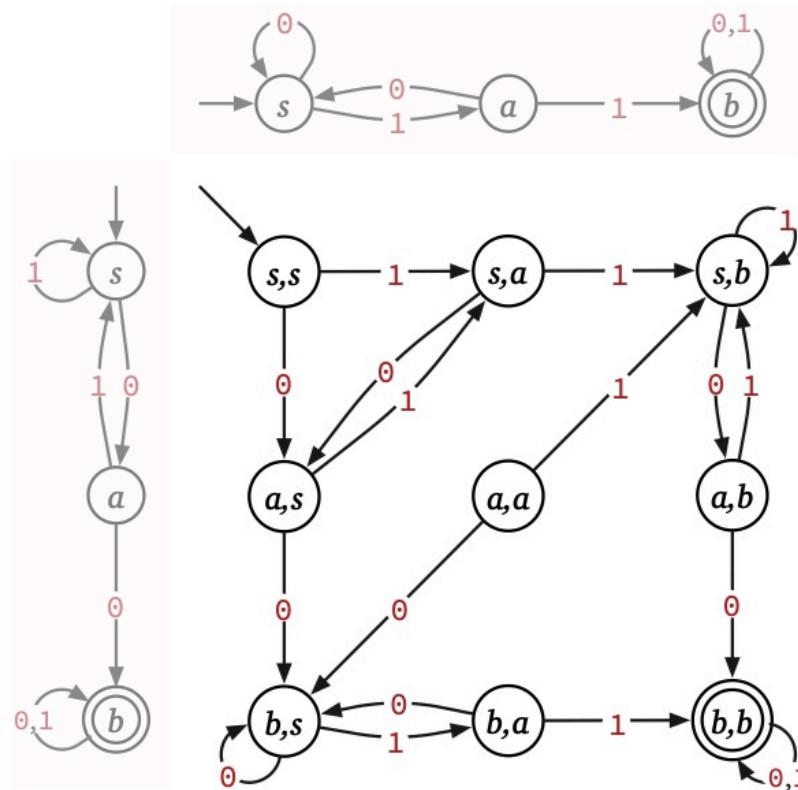
$L(M_{00})$: have 00 as a substring

Can we accept strings with both 11 & 00?
product construction

use states (p, q) where p from M_{00} &
 q from M_{11}

start from (s, s')
from M_{00} from M_{11}

transitions $(p, q) \xrightarrow{a} (p', q')$
 if M_{α_0} has $p \xrightarrow{a} p'$ & M_{α_1} has
 accept (p, q) where M_{α_0} accepts p &
 M_{α_1} accepts q



Building a DFA for the language of strings containing both **00** and **11**.

Given two machines $M_1 = (Q_1, \delta_1, s_1, A_1)$
 $+ M_2 = (Q_2, \delta_2, s_2, A_2)$,

a product or product construction

is a machine $M = (Q, \delta, s, A)$ s.t.

- $Q = Q_1 \times Q_2 = \{(p, q) \mid p \in Q_1 \text{ and } q \in Q_2\}$

- $\delta((p, q), a) =$

$(\delta_1(p, a), \delta_2(q, a))$

- $s = (s_1, s_2)$

Lemma: $\delta^*(p, q, w) = (\delta_1^*(p, w), \delta_2^*(q, w))$

Induction!

Different A give different languages!

Want $L(M) = L(M_1) \cap L(M_2)$:

$$A = \{(p, q) \mid p \in A_1, \underline{\text{and}} \ q \in A_2\}$$

$\dots L(M_1) \cup L(M_2)$

$$A = \{(p, q) \mid p \in A_1, \underline{\text{or}} \ q \in A_2\}$$

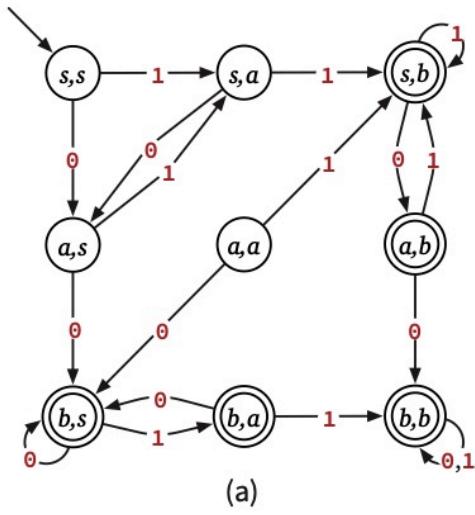
\uparrow inclusive

$$L(M_1) \setminus L(M_2)$$

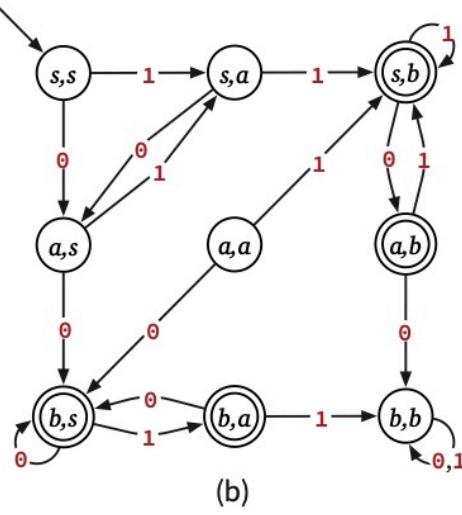
symmetric $\overbrace{A = \{(p, q) \mid p \in A_1, \underline{\text{and}} \ q \notin A_2\}}$

diff. $L(M_1) \oplus L(M_2)$

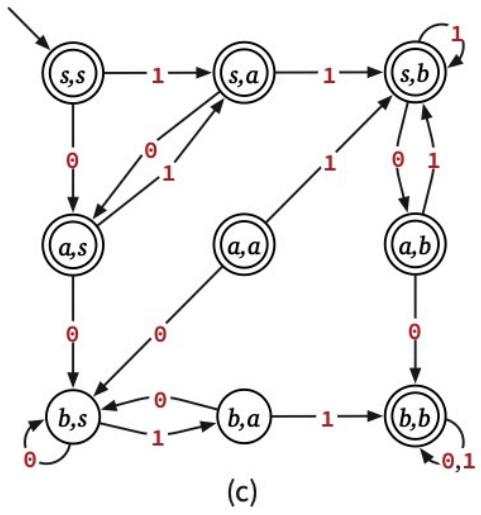
$$A = \{(p, q) \mid p \in A_1, \underline{\text{xor}} \ q \in A_2\}$$



(a)



(b)



(c)

DFAs for (a) strings that contain 00 or 11 , (b) strings that contain either 00 or 11 but not both, and (c) strings that contain 11 if they contain 00 . These DFAs are identical except for their choices of accepting states.

When you do a product, you
must describe the accept
 states.

A language is "automatic" if it is $L(M)$ for some DFA M .

Thm: Let L_1 & L_2 be automatic languages, then the following are automatic.

$$\bar{L}_1 = \epsilon^* \setminus L_1$$

$$L_1 \cup L_2$$

$$L_1 \cap L_2$$

$$L_1 \setminus L_2$$

$$L_1 \oplus L_2$$

Thm (Kleene): The automatic languages are precisely the regular languages.

Cor: Given two automatic languages

$L_1 + L_2$,

$L_1 \cdot L_2 + (L_1)^*$ are automatic.

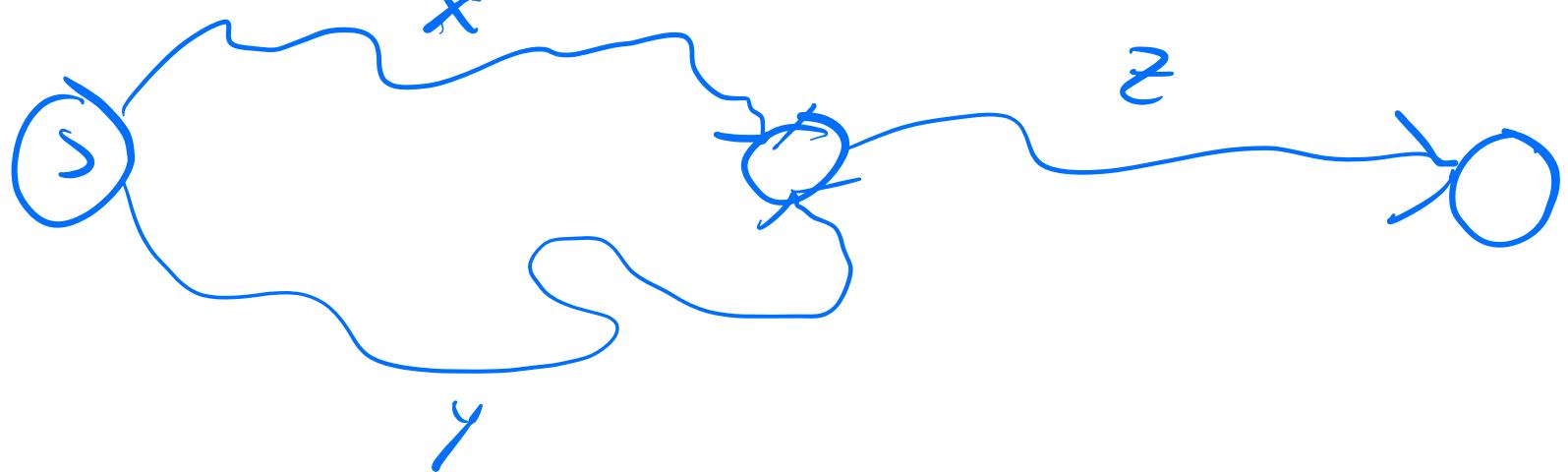
To prove L is regular:

Find a regular expression
or build a DFA

;

Suppose we have two string x & y
+ a DFA $M = (Q, \Sigma, s, A)$.

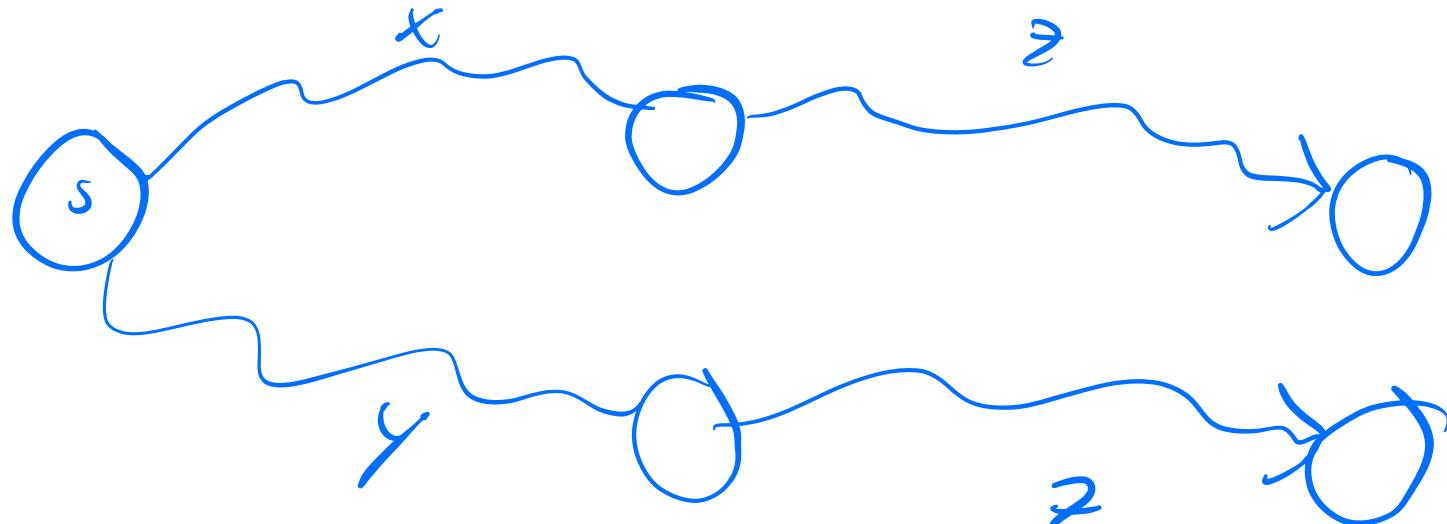
Suppose $\delta^*(s, x) = \delta^*(s, y)$.



Let z be another string.

$$\delta^*(s, xz) = \delta^*(s, yz)$$

(\Rightarrow) If $s^*(s, xz) \neq s^*(s, yz)$,
then $s^*(s, x) \neq s^*(s, y)$



Meaning M has ≥ 2 states.
Also, for any language L s.t.
 $xz \in L$
 $yz \notin L$, any DFA accepting
 L has ≥ 2 states.

Suppose we have a set F of strings & for any distinct x, y in F , there is a z s.t., $xz \in L$, \leftarrow some $yz \notin L$. language

\Rightarrow any DFA for L has $\geq |F|$ states.