

HW1 due 9pm.

GPS & HW due next Mon & Tues.

Language: set of strings.

Regular languages: \emptyset , a single string $\{w\}$, union, concatenation, or kleene closure of other regular languages.

Regular expressions: \emptyset , w , $R_1 + R_2$,
 $R_1 R_2$, or R^*

Ex: find a regular expression for non-negative binary numerals divisible by 4 with no redundant leading 0s.

$$\begin{array}{r} \cancel{00100} \\ 100 \\ \cancel{101} \\ \hline 0 + 1 (0 + 1) \cancel{00} \end{array}$$

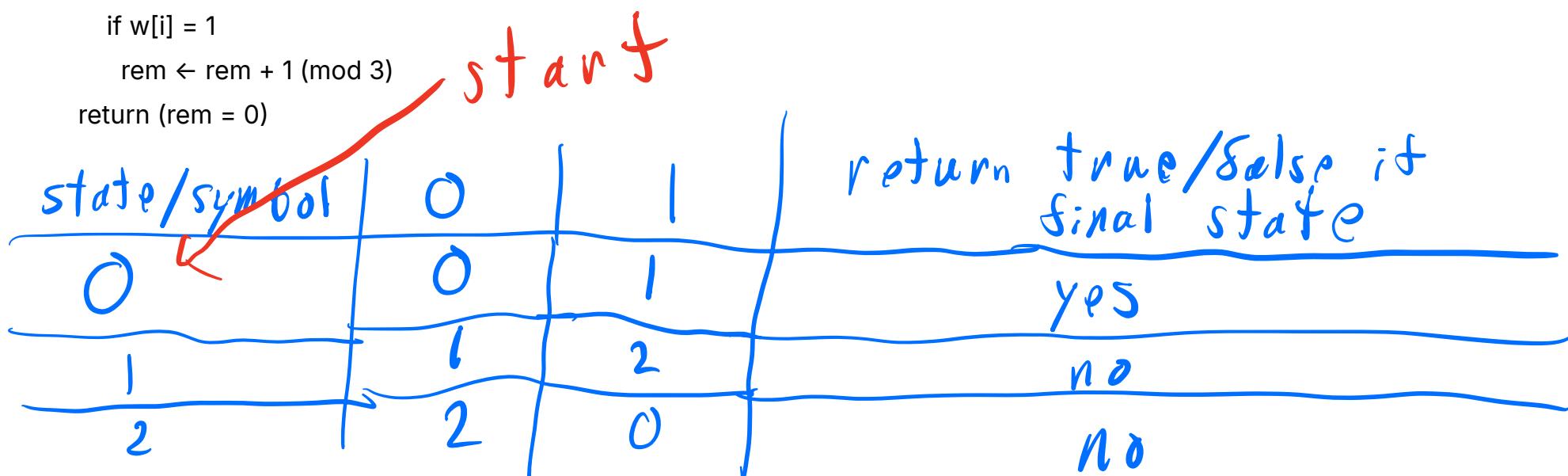
Want to take a binary string $w \in \{0, 1\}^*$ and decide if #1s is divisible by 3.

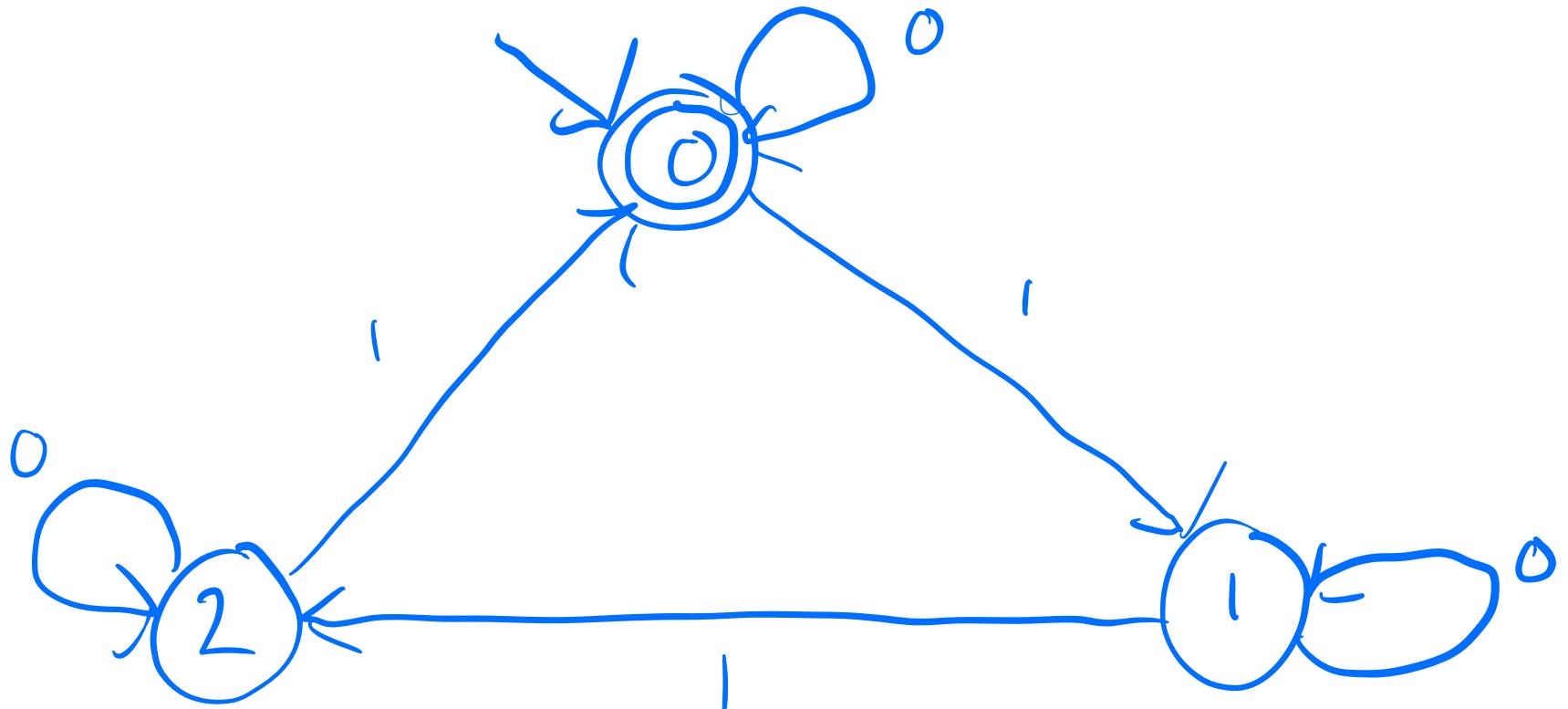
(i.e. $\#(1, w) \equiv 0 \pmod{3}$)

Want to look at symbols one-by-one.

Num1sDivisibleBy3($w[1..n]$)

```
rem ← 0
for i ← 1 to n
  if  $w[i] = 1$ 
    rem ← rem + 1  $\pmod{3}$ 
return (rem = 0)
```





finite-state machine or

deterministic finite-state automata
(DFA)

A DFA consists of five components:

- an arbitrary finite set Σ , the alphabet
- an arbitrary finite set Q , the states
- an arbitrary transition function

$$\delta: Q \times \Sigma \rightarrow Q$$

- a start state $s \in Q$
- a subset $A \subseteq Q$, accept states

Given an input string $w \in \Sigma^*$, DFA reads symbols from left to right.

If at state q + read a , go to state $\delta(q, a)$.

After reading w , it accepts w if
in a state in A & rejects w
otherwise.

extended transition function:

$$\delta^*: Q \times \Sigma^* \rightarrow Q$$

$$\delta^*(q, w) := \begin{cases} q & \text{if } w = \epsilon \\ (\delta^*(\delta(q, a), x)) & \text{if } w = a \cdot x \end{cases}$$

(where you end up after reading all of w)

DFA accepts iff $\delta^*(s, w) \in A$.

Original example:

$$\Sigma = \{0, 1\}$$

$$Q = \{0, 1, 2\}$$

$$\delta(q, a) = \begin{cases} q & \text{if } a = 0 \\ q + 1 \pmod{3} & \text{if } a = 1 \end{cases}$$

$$s = 0$$

$$A = \{0\}$$

$$w = 01010110101$$

$$\begin{aligned}\delta^*(s, w) &= \delta^*(0, 01010110101) \\ &= \delta^*(\delta(0, 0), 1010110101) \\ &= \delta^*(0, 1010110101) \\ &= \delta^*(\delta(0, 1), 010110101) \\ &= \delta^*(1, 010110101)\end{aligned}$$

$\vdash f^P(0, e)$

$\vdash 0 \in A$

accept!

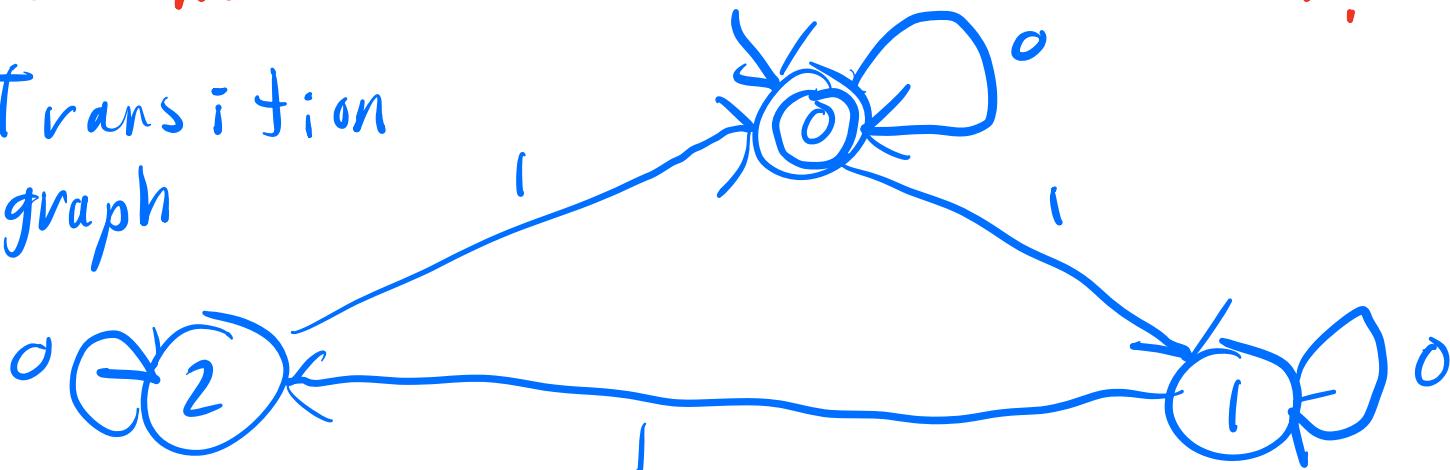
Describing a DFA:

1) Table

q	$\delta(q, 0)$	$\delta(q, 1)$	$q \in A$
0	0	1	True
1	1	2	False
2	2	0	False

Also name the start state!

2) Transition graph



Don't forget start state arrow \rightarrow
or accept state circles \textcircled{O} .

3) math notation

$$\delta(-, -) = \begin{cases} & \text{if} \\ & \text{id} \\ & \vdots \end{cases}$$

Ex: Binary strings contain a 1.

Ex: all ~~numerals~~ ^{binary!!} w that are a multiple of 5.

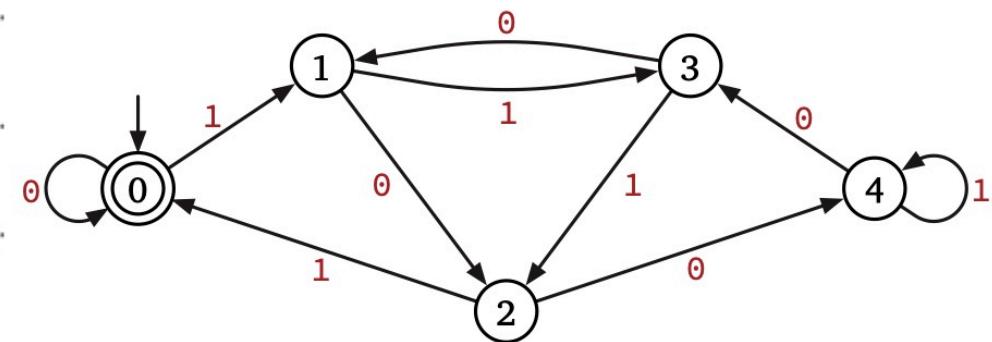
01100

MULTIPLEOF5($w[1..n]$):

```
rem ← 0
for  $i \leftarrow 1$  to  $n$ 
     $rem \leftarrow (2 \cdot rem + w[i]) \bmod 5$ 
if  $rem = 0$ 
    return TRUE
else
    return FALSE
```

q	$\delta[q, 0]$	$\delta[q, 1]$	$A[q]$
0	0	1	TRUE
1	2	3	FALSE
2	4	0	FALSE
3	1	2	FALSE
4	3	4	FALSE

or $q(f, a) = (2q + a) \bmod 5$



start at $s=0$.

Ex: begin with 001.

