

Office hours:

Emily : Thur 4-5pm (conceptual) Siebel basement
Fri 11am-noon (general)

Ruta : 1:30 - 2:30 Thur (general)

Homework parties: Sat 2-4

Sun 2-4

Mon 6-8

Lemma: For any two strings w and z ,

$$|w \circ z| = |w| + |z|$$

Think big!

$$(w = a \cdot x) \quad (z = b \cdot y) \quad \text{induct on } w!$$

$$|w \circ z| = |(a \cdot x) \circ z| = |a| + |x \circ z|$$

Proof: Let w and z be two arbitrary strings.

Assume $|x \circ z| = |x| + |z|$ for every string x such that $|x| < |w|$.

There are two cases to consider.

Suppose $w = \epsilon$.

$$\begin{aligned}|w \circ z| &= |\epsilon \circ z| \\ &= |z|\end{aligned}$$

$w = \epsilon$
def. \circ

$$= 0 + |z| \quad \text{arithmetic}$$

$$\begin{aligned}&= |\epsilon| + |z| \quad \text{def. } |\cdot| \\ &= |w| + |z| \quad w = \epsilon\end{aligned}$$

Suppose $w = a \cdot x$ for some symbol a + string x .

$$\begin{aligned}|w \cdot z| &= |(a \cdot x) \cdot z| \\&= |a \cdot (x \cdot z)| \\&= | + |x \cdot z| \\&= | + |x| + |z| \\&= |a \cdot x| + |z| \\&= |w| + |z|\end{aligned}$$

$$w = a \cdot x$$

$$\text{def. } \bullet$$

$$\text{def. H}$$

I H

$$\text{def. I.I}$$

$$w = a \cdot x$$

[Lemma]: $(w \cdot y) \cdot z = w \cdot (y \cdot z)$

A formal language is a set of strings from some common alphabet.

Σ^* : all strings with alphabet Σ
Language $L \subseteq \Sigma^*$.

Ex: \emptyset empty set (not a string)

$\{\emptyset\}$ not empty, but has empty string

$\{0,1\}^*$ binary strings

$\{BABA, KIKI, FOFO, JIJ\}$

from $\{0,1\}^*$ with an odd # 1's

The set of all valid Python

programs,

If L_1 and L_2 are languages, so is

$L_1 \cup L_2$ $L_1 \setminus L_2$

$L_1 \cap L_2$ $L_1 \oplus L_2$ \in symmetric diff.

$\bar{L}_1 := \Sigma^* \setminus L_1$ (compliment)

The concatenation of languages

L_1 and L_2 is

$L_1 \circ L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$

Ex: $\{\text{SUPER, SPIDER, BAT}\} \circ \{\text{MAN, WOMAN}\}$

has size 6.

$$\text{Ex: } \emptyset \cdot L = \emptyset = L \cdot \emptyset$$

$$\text{Ex: } \{e\} \cdot L = L = L \cdot \{e\}$$

Kleene closure (Kleene star) of

“clay-knee” language L is

$$L^* = \{e\} \cup L \cup L \cdot L \cup L \cdot L \cdot L \cup \dots$$

i.e. smallest solution to

$$L^* = \{e\} \cup L \cdot L^*$$

i.e. $w \in L^*$ iff $w = e$ or $w = xy$ with
 $x \in L$ and $y \in L^*$.

Ex: $\{0, 11\}^*$ = { $\epsilon, 0, 11, 00, 011, 111, 000, \dots$

Ex: $\emptyset^* = \{\epsilon\}$

$\{\epsilon\}^* = \{\epsilon\}$

A language L is regular if one of
 $L = \emptyset$

L contains one string (could be ϵ)

L is the union of two regular languages

L is the concatenation of two
reg. languages.

L is the Kleene closure of a reg. language.

Not regular: $\{0^n 1^n \mid n \geq 0\}$

Regular expressions:

\emptyset

w

$A + B$

\nwarrow \uparrow simpler regular expressions

AB

A^*

$*$ > concatenation > +

Language

: \emptyset

: $\{w\}$

: A 's language \cup
 B 's lang.

: A 's \bullet B 's

: $(A$'s lang.) *

can add parentheses

$$\text{Ex: } 0 + 10^* = \{0\} \cup (\{1\} \cdot \{0\}^*) \\ = \{0, 1, 10, 100, 1000, \dots\}$$

'R': a regular expression

It represents language $L(R)$

w matches R is $w \in L(R)$

Ex: Even length binary strings

$$((0+1)(0+1))^*$$

Ex: Binary strings of alternating 0's + 1's

$$(\epsilon + 1)(01)^*(\epsilon + 0)$$