

Describe deterministic finite-state automata that accept each of the following languages over the alphabet  $\Sigma = \{0, 1\}$ . Give the states of your DFAs mnemonic names, and describe briefly *in English* the meaning or purpose of each state.

Either drawings or formal descriptions are acceptable, as long as the states  $Q$ , the start state  $s$ , the accept states  $A$ , and the transition function  $\delta$  are all clear. Try not to use too many states, but *don't* try to use as few states as possible. Clarity is more important than brevity.

Yes, these are exactly the same languages that you saw last Friday.

---

- o. All strings.
1. All strings containing the substring **000**.
2. All strings *not* containing the substring **000**.
3. All strings in which every run of **0**s has length at least 3.
4. All strings in which the last **1** (if any) appears before the first substring **000** (if any).
5. All strings containing at least three **0**s.
6. Every string except **000**. *[Hint: Don't try to be clever.]*

---

#### More difficult problems to think about later:

7. All strings  $w$  such that *in every prefix of  $w$* , the number of **0**s and **1**s differ by at most 1.
8. All strings containing at least two **0**s and at least one **1**.
9. All strings  $w$  such that *in every prefix of  $w$* , the number of **0**s and **1**s differ by at most 2.
10. All strings in which every run has odd length. (For example, **0001** and **100000111** and the empty string  $\varepsilon$  are in this language, but **000000** and **001000** are not.)
- \*11. All strings in which the substring **000** appears an even number of times. (For example, **01100** and **000000** and the empty string  $\varepsilon$  are in this language, but **00000** and **001000** are not.)