CS/ECE 374 A Lab 1a — January 21 Spring 2026

The following problems ask you to prove some “obvious” claims about recursively-defined string
functions. In each case, we want a self-contained, step-by-step induction proof that builds on
formal definitions and prior results, not on intuition. In particular, your proofs must refer to the
formal recursive definitions of string length and string concatenation:

wl 0 ifw=e
w| =
1+ x| if w = ax for some symbol a and some string x
Z ifw=¢e
weg: = . .
a-(x*z) if w=ax for some symbol a and some string x

You may freely use the following results:

Lemma 1: w * ¢ = w for all strings w.
Lemma 2: |w * z| = |w| + || for all strings w and z.
Lemma 3: (wey)e*z=we*(y *z)forall strings w, y, and z.

Inductive proofs of these lemmas (extracted directly from the lecture notes) appear on the
following pages. Your inductive proofs should follow the general structure of these examples.

The reversal wR of a string w is defined recursively as follows:

WR::{S ifw=e

xR ea if w=ax for some symbol a and some string x

For example, STRESSEDR = DESSERTS and WTF374R = 473FTw.

1. Prove that |w| = [wR| for every string w.
2. Prove that (w  2)R = 2R « wR for all strings w and z.

3. Prove that (W®)R = w for every string w.

[Hint: The proof for problem 3 relies on problem 2, but it may be easier to solve problem 3 first.]

To think about later: Let #(a,w) denote the number of times symbol a appears in string w. For
example, #(X,WTF374) = 0 and #(0,000010101010010100) = 12.

4. Give a formal recursive definition of #(a,w). (Your definition should have the same format
as the definitions of |w| and w * z at the top of this page.)

5. Prove that #(a,w * z) = #(a,w) + #(a, 2) for all symbols a and all strings w and z.

6. Prove that #(a, wR) = #(a, w) for all symbols a and all strings w.
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Lemma 1. w ¢ ¢ =w for every string w.

Proof: Let w be an arbitrary string.

Assume that x * € = x for every string x such that |x| < |w]|.

There are two cases to consider:

* Suppose w = €.

weg=¢ge°¢ because w = ¢,
=¢ by definition of e,
=w because w = ¢.

* Suppose w = ax for some symbol a and string x.

wee=(a-x)e*e because w=ax,

=a-(x *¢) by definition of °,

=a-x by the inductive hypothesis,
=w because w = ax.
In both cases,
we conclude that w * ¢ = w. O

The nested boxes above try to emphasize this proof’s structure. The green italic text is
boilerplate for almost all string-induction proofs. The case breakdown directly mirror cases in the
recursive definitions of strings and concatenation. The red bold text is the meat of the induction
hypothesis and the result we’re trying to prove. I'll use the same coloring in later proofs, but I'll
omit the boxes.

We strongly recommend writing induction proofs “outside in”: Write all the boilerplate text
in the larger boxes before thinking about what to write in smaller boxes. We also recommend
writing the most general (“inductive”) cases before thinking about special (“base”) cases, and
writing the derivation for each case from both ends toward the middle.
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Lemma 2. |w * g| = |w|+ |z| for all strings w and z.

Proof: Let w and z be arbitrary strings.
Assume that |x * g| = |x| + |2| for every string y such that |x| < |w|.
(Notice that we are inducting only on w.)

There are two cases to consider:

* Suppose w = €.

lwez|=|e ez because w = ¢
= |z] by definition of
=0+ 2] by definition of +
= le| + |2] by definition of ||
= |w| + |z] because w = ¢

* Suppose w = ax for some symbol a and string x.

lwez|=|ax *z| because w = ax
=la-(x°2) by definition of
=1+]|x°*g| by definition of |- |
=1+ |x|+|z] by the inductive hypothesis
= |ax| + |z| by definition of |- |
= |w| + |z| because w = ax
In both cases, we conclude that |w * z| = |w|+ |2|. O
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Lemma 3. (wey)ez=we (y *g) for all stringsw, y, and z.

Proof: Let w, y, and z be arbitrary strings.
Assume that (x *y) * 2 =x * (y * 2) for every string x such that |x| < |w]|.
(Notice again that we are inducting only on w.)

There are two cases to consider.

* Suppose w = €.

wey)ez=(e*y)*z because w = ¢
=Yz by definition of
=¢e°*(y*2) by definition of
=we(y*z2) because w = ¢

* Suppose w = ax for some symbol a and some string x.

(wey)ez=(axey)ez because w = ax
=(a-(xe*y))ez by definition of *
=a-((xe*y)e2) by definition of *
=a-(x°*(y-°2) by the inductive hypothesis
=ax°*(y*2) by definition of *
=we(ye°z) because w = ax
In both cases, we conclude that (w e y) ez =w * (y ® 2). O



