CS/ECE 374 A: Algorithms & Models of Computation

Undecidability

Lecture 23 April 22, 2025

Part I

Formal Definitions

What is Computation?

Recall: our most general form of computation was that performed by Turing Machines.

What is Computation?

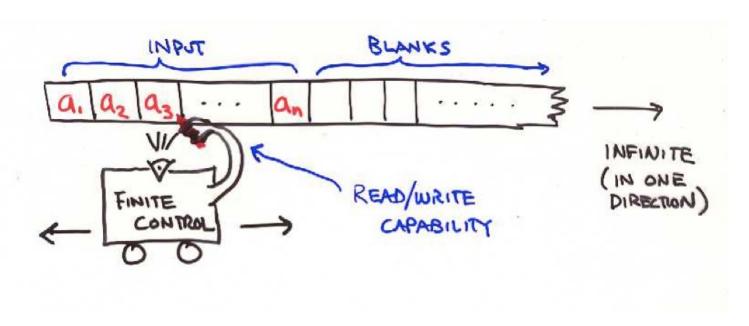
Recall: our most general form of computation was that performed by Turing Machines.



Each step: read the current character, write a new character, move one space, update (finite) state of head.

What is Computation?

Recall: our most general form of computation was that performed by Turing Machines.



Each step: read the current character, write a new character, move one space, update (finite) state of head.

Extremely tedious to work with TMs, so we'll just extract the properties we need and work with those.

On input \mathbf{w} , a TM either accepts \mathbf{w} , rejects \mathbf{w} , or runs forever.

On input \mathbf{w} , a TM either accepts \mathbf{w} , rejects \mathbf{w} , or runs forever.

For a TM M, we define the following languages:

- $L(M) = Accept(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$
- Reject $(M) = \{ w \in \Sigma^* \mid M \text{ rejects } w \}$
- Diverge $(M) = \{ w \in \Sigma^* \mid M \text{ runs forever on } w \}$
- $Halt(M) = \{w \in \Sigma^* \mid M \text{ halts on } w\}$

On input \mathbf{w} , a TM either accepts \mathbf{w} , rejects \mathbf{w} , or runs forever.

For a TM M, we define the following languages:

- $L(M) = Accept(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$
- Reject $(M) = \{ w \in \Sigma^* \mid M \text{ rejects } w \}$
- Diverge $(M) = \{ w \in \Sigma^* \mid M \text{ runs forever on } w \}$
- $Halt(M) = \{w \in \Sigma^* \mid M \text{ halts on } w\}$

In order for a language L to be computable (aka decidable aka recursive), we require that there is a TM M such that Accept(M) = L and Diverge $(M) = \emptyset$.

On input \mathbf{w} , a TM either accepts \mathbf{w} , rejects \mathbf{w} , or runs forever.

For a TM M, we define the following languages:

- $L(M) = Accept(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$
- Reject $(M) = \{ w \in \Sigma^* \mid M \text{ rejects } w \}$
- Diverge $(M) = \{ w \in \Sigma^* \mid M \text{ runs forever on } w \}$
- $Halt(M) = \{w \in \Sigma^* \mid M \text{ halts on } w\}$

In order for a language L to be computable (aka decidable aka recursive), we require that there is a TM M such that Accept(M) = L and Diverge $(M) = \emptyset$.

• If we know that Accept(M) = L, we call L "acceptable" or "recursively enumerable".

Every TM can be encoded as a finite-length bit string.

- Each part of $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ is finite, so use whatever (reasonable) encoding you want!
- We will often denote the *encoding* of M by $\langle M \rangle$.

Spring 2025

Every TM can be encoded as a finite-length bit string.

- Each part of $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ is finite, so use whatever (reasonable) encoding you want!
- We will often denote the *encoding* of M by $\langle M \rangle$.

Properties we need from our encoding:

• Unique: different TMs have different encodings. (Bit strings that don't correspond to any TM can be mapped to a "dummy" machine.)

Every TM can be encoded as a finite-length bit string.

- Each part of $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ is finite, so use whatever (reasonable) encoding you want!
- We will often denote the *encoding* of M by $\langle M \rangle$.

Properties we need from our encoding:

- Unique: different TMs have different encodings. (Bit strings that don't correspond to any TM can be mapped to a "dummy" machine.)
- **Modifiable**: we can (algorithmically) modify an encoding to change the behavior of its TM. (For example, switch accepting with rejecting, add pre- or post-processing, etc.)

Every TM can be encoded as a finite-length bit string.

- Each part of $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ is finite, so use whatever (reasonable) encoding you want!
- We will often denote the *encoding* of M by $\langle M \rangle$.

Properties we need from our encoding:

- Unique: different TMs have different encodings. (Bit strings that don't correspond to any TM can be mapped to a "dummy" machine.)
- Modifiable: we can (algorithmically) modify an encoding to change the behavior of its TM. (For example, switch accepting with rejecting, add pre- or post-processing, etc.)
- Executable: There is a universal TM U that on input $\langle M, w \rangle$ simulates M(w). (So $L(U) = \{\langle M, w \rangle \mid M \text{ accepts } w\}$.)

Properties of Computability

Lemma

Let L and L' be decidable languages. Then $L \cup L'$, $L \cap L'$, L - L', and L' - L' are decidable.

Alg: san the alg for each of Land L', accept accordingly

Properties of Computability

Lemma

Let L and L' be decidable languages. Then $L \cup L'$, $L \cap L'$, L - L', and L' - L' are decidable.

Lemma

Let L and L' be acceptable languages. Then $L \cup L'$ and $L \cap L'$ are acceptable. (L - L') and L' - L' may or may not be!)

Properties of Computability

Lemma

Let L and L' be decidable languages. Then $L \cup L'$, $L \cap L'$, L - L', and $\mathbf{L'} - \mathbf{L}$ are decidable.

Lemma

Let L and L' be acceptable languages. Then $L \cup L'$ and $L \cap L'$ are acceptable. (L - L') and L' - L may or may not be!)

Lemma

Let L be an acceptable language. Then L is decidable if and only if Σ^* — **L** is acceptable.

Part II

The Halting Problem

TMs are our "most general" form of computation—is there anything they can't compute?

TMs are our "most general" form of computation—is there anything they can't compute?

Claim

There exists an undecidable language.

TMs are our "most general" form of computation—is there anything they can't compute?

Claim

There exists an undecidable language.

• There are uncountably many languages.

TMs are our "most general" form of computation—is there anything they can't compute?

Claim

There exists an undecidable language.

- There are uncountably many languages.
- Each decidable language requires its own TM—of which there are only countably many!

TMs are our "most general" form of computation—is there anything they can't compute?

Claim

There exists an undecidable language.

- There are uncountably many languages.
- Each decidable language requires its own TM—of which there are only countably many!

Are there "natural" or "interesting" undecidable languages?

"Interesting" Undecidable Problems

Many problems throughout math and CS turn out to be undecidable:

- Do two CFGs generate the same language?
- What is the shortest program that outputs a given string?
- Does a multivariate polynomial have an integer root?
- Are two groups isomorphic?
- Can Conway's Game of Life get from one pattern to another?
- Can a given set of tiles fill the plane?

"Interesting" Undecidable Problems

Many problems throughout math and CS turn out to be undecidable:

- Do two CFGs generate the same language?
- What is the shortest program that outputs a given string?
- Does a multivariate polynomial have an integer root?
- Are two groups isomorphic?
- Can Conway's Game of Life get from one pattern to another?
- Can a given set of tiles fill the plane?

Our focus: problems that deal with computation / the behavior of programs.

The Halting Problem

Let $L_{HALT} = \{\langle M, w \rangle \mid M(w) \text{ halts} \}.$

How might you try to approach solving this problem?

Theo I is 15t say M (w) if M(w) does not halt we don't know who to Eive 4p on it. Ilea 7: look at the "cole" of M and See if there's en infinite loop code can be quite complicated.

Halting and Goldbach

Does CheckGoldbach halt?

Halting and Goldbach

Does CheckGoldbach halt?

Goldbach's Conjecture: Every even integer above 4 can be written as the sum of two primes. (Open problem since 1742)

Halting and Goldbach

Does CheckGoldbach halt?

Goldbach's Conjecture: Every even integer above 4 can be written as the sum of two primes. (Open problem since 1742)

 If we could check if CheckGoldbach halts, we would resolve Goldbach's conjecture!

Halting is Undecidable

Theorem

 $L_{HALT} = \{ \langle M, w \rangle \mid M(w) \text{ halts} \} \text{ is undecidable.}$

Halting is Undecidable

Theorem

```
L_{HALT} = \{ \langle M, w \rangle \mid M(w) \text{ halts} \} \text{ is undecidable.}
```

Suppose for contradiction that there is some program TestHalt that decides L_{HALT} . We construct the following program:

```
Turing(x):
    Interpret x as the encoding of some TM M_x
    if TestHalt(\langle M_x, x \rangle) returns True:
        Enter an infinte loop
    else
        return ''Done!''
```

Halting is Undecidable

Theorem (

```
L_{HALT} = \{ \langle M, w \rangle \mid M(w) \text{ halts} \} \text{ is undecidable.}
```

Suppose for contradiction that there is some program TestHalt that decides L_{HALT} . We construct the following program:

```
Turing(x):
    Interpret x as the encoding of some TM M_x
    if TestHalt(\langle M_x, x \rangle) returns True:
        Enter an infinte loop
    else
        return ''Done!''
```

What does $Turing(\langle Turing \rangle)$ do?

```
if Test Halt returns False: Turing infinite loops X

if Test Halt returns False: Turing halts
```

Part III

Undecidability Reductions

Our proof that *L_{HALT}* is undecidable relied on the ability to pass Turing its own source code—what happens if we don't allow inputs?

Our proof that *L_{HALT}* is undecidable relied on the ability to pass Turing its own source code—what happens if we don't allow inputs?

Theorem

 $L_{HNI} = \{ \langle M \rangle \mid M \text{ halts given no input} \}$ is undecidable.

Our proof that L_{HALT} is undecidable relied on the ability to pass Turing its own source code—what happens if we don't allow inputs?

Theorem

 $L_{HNI} = \{ \langle M \rangle \mid M \text{ halts given no input} \}$ is undecidable.

Idea: show that if we can decide L_{HNI} , we can decide L_{HALT} .

```
from magic import TestHNI

TestHalt(\langle M, w \rangle):

Construct a new program P() that:

O suns M (w)

E halts

return test HNI(\langle P \rangle)
```

Our proof that L_{HALT} is undecidable relied on the ability to pass Turing its own source code—what happens if we don't allow inputs?

Theorem

 $L_{HNI} = \{ \langle M \rangle \mid M \text{ halts given no input} \}$ is undecidable.

Idea: show that if we can decide L_{HNI} , we can decide L_{HALT} .

Since L_{HALT} is undecidable, L_{HNI} must be as well.

 From last lecture, this also means that writing a 124 autograder is impossible!

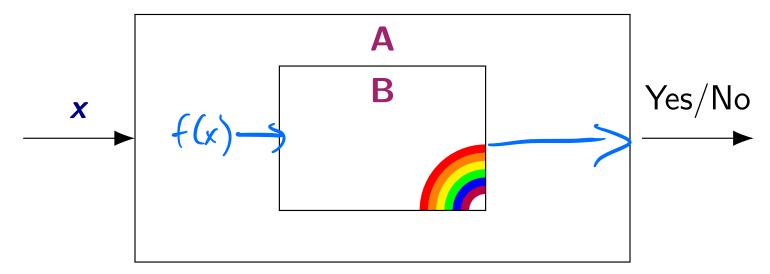
Reducing Decision Problems

Note the nice form of the previous reduction: given an input $\langle M, w \rangle$, we were able to convert it into an input we could pass to TestHNI.

Reducing Decision Problems

Note the nice form of the previous reduction: given an input $\langle M, w \rangle$, we were able to convert it into an input we could pass to TestHNI.

General pattern: given two *decision* problems A and B, we can reduce A to B by giving a (computable) function f such that $x \in L_A$ if and only if $f(x) \in L_B$.



Reducing Decision Problems

Note the nice form of the previous reduction: given an input $\langle M, w \rangle$, we were able to convert it into an input we could pass to TestHNI.

General pattern: given two *decision* problems A and B, we can reduce A to B by giving a (computable) function f such that $x \in L_A$ if and only if $f(x) \in L_B$.

When using this type of reduction, you just have to define (a computable) f and prove that $x \in L_A$ iff $f(x) \in L_B$!

• This is not the *only* way to do a reduction, but it is generally the simplest, and so the one we will use the most.

15

Spring 2025

Accepting 0³⁷⁴

Let $L_{374} = \{ \langle M \rangle \mid M \text{ accepts } 0^{374} \}$.

Spring 2025

Accepting 0³⁷⁴

Let $L_{374} = \{ \langle M \rangle \mid M \text{ accepts } 0^{374} \}$.

We can prove L_{374} is undecidable by reducing L_{HALT} to it!

Accepting 0³⁷⁴

Let
$$L_{374} = \{\langle M \rangle \mid M \text{ accepts } 0^{374}\}.$$

We can prove L_{374} is undecidable by reducing L_{HALT} to it!

• What f has $\langle M, w \rangle \in L_{HALT}$ iff $f(\langle M, w \rangle) \in L_{374}$?

Accepting Regular Language

Let $L_{AccReg} = \{ \langle M \rangle \mid Accept(M) \text{ is regular} \}.$

Accepting Regular Language

Let $L_{AccReg} = \{ \langle M \rangle \mid Accept(M) \text{ is regular} \}.$

We can prove L_{AccReg} is undecidable by reducing L_{HNI} to it.

• What f has $\langle M \rangle \in L_{HNI}$ iff $f(\langle M \rangle) \in L_{AccReg}$?

Spring 2025

Accepting The Same Language

Let $L_{AccSame} = \{ \langle M_1, M_2 \rangle \mid Accept(M_1) = Accept(M_2) \}.$

Accepting The Same Language

Let $L_{AccSame} = \{ \langle M_1, M_2 \rangle \mid Accept(M_1) = Accept(M_2) \}.$

What language should we reduce to $L_{AccSame}$? What function f should our reduction use?

Takeaway Points

Determining if a program halts is *impossible* to do algorithmically.

 If such an algorithm existed, we could use it to construct a program that the algorithm is wrong about!

We can use this to prove that "most" problems about the behavior of a program are undecidable.

- If we can reduce an undecidable problem (eg, L_{HALT}) to our problem, we know that our problem is also undecidable.
- Simplest type of reduction: give a (computable) function f such that $\langle M, w \rangle \in L_{HALT}$ iff $f(\langle M, w \rangle)$ is in our language.