CS/ECE 374 A: Algorithms & Models of Computation

Regular Languages and Expressions

Lecture 2 January 23, 2025

Background

Fix some finite alphabet Σ .

- Σ^* is the set of all strings over Σ
- A language over Σ is a subset of strings. That is, $\boldsymbol{L} \subseteq \Sigma^*$
- Σ^* is countably infinite. Set of all languages $= \mathcal{P}(\Sigma^*)$ is uncountably infinite
- Each machine/program can be described by a string. Hence set of machines/programs is countably infinite
- Implies many/most languages that are too "complex" for machines/programs

Background

Fix some finite alphabet Σ .

- Σ^* is the set of all strings over Σ
- A language over Σ is a subset of strings. That is, $\boldsymbol{L} \subseteq \Sigma^*$
- Σ^* is countably infinite. Set of all languages $= \mathcal{P}(\Sigma^*)$ is uncountably infinite
- Each machine/program can be described by a string. Hence set of machines/programs is countably infinite
- Implies many/most languages that are too "complex" for machines/programs

Question: What languages are easy? What languages should we focus on? Can we *classify* them via various features?

Languages

Study of languages motivated by (among many others)

- linguistics and natural language understanding
- programming languages and logic
- computation and machines

Intution: As ability of a language to *express/model* increases the more *complex/computationally hard* it becomes.

Chomsky Hierarchy and Machines

Part I

Regular Languages

Chekuri and Hulett (UIUC)

CS/ECE 374 A

5

Spring 2025 5 / 20

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

• Ø is a regular language

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively/recursively via the following rules:

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- {a} is a regular language for each a ∈ Σ; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1, L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- {w | w is a valid date of the form mm/dd/yy}
- {w | w describes a valid Roman numeral} {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.
- {w | w contains "CS374" as a substring}.

- How expressive are these languages?
- What can we use them for?
- What are limitations? That is, what can be *not* express as regular languages?

Part II

Regular Expressions

Chekuri and Hulett (UIUC)

CS/ECE 374 A

10

Spring 2025 10 / 20

Regular Expressions

A way to denote/describe/represent regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star named after him.

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following: Base cases:

- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following: Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is

Regular Expressions

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $r_1 + r_2$ denotes $R_1 \cup R_2$ r_1r_2 denotes R_1R_2 r^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Regular Languages vs Regular Expressions

Regular Languages

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is **Regular Expressions**

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $r_1 + r_2$ denotes $R_1 \cup R_2$ r_1r_2 denotes R_1R_2 r^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Examples: $(0 + 1)^*$, $010^* + (110)^*$, $(10 + 110)^*(11 + 10)$

 For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}

- For a regular expression r, *L*(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- For a regular expression r, *L*(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +.
 Example: r*s + t = ((r*)s) + t

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +.
 Example: r*s + t = ((r*)s) + t
- Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 r + s + t = r + (s + t) = (r + s) + t.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +.
 Example: r*s + t = ((r*)s) + t
- Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. Example: rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^{+}) = R^{+}$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \bullet s$.

Skills

• Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)

Skills

- Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)
- Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

• 0*: set of all strings over $\{0\}$, $\{\epsilon, 0, 00, 000, \dots, \}$

- 0^* : set of all strings over {0}, { ϵ , 0, 00, 000, ..., }
- $(0+1)^*$: set of all strings over $\{0,1\}$

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*:

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*:

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0:

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$:

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, strings with no two consecutive 0s and no two conescutive 1s

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, strings with no two consecutive 0s and no two conescutive 1s
- $(\epsilon + 0)(1 + 10)^*$:

- 0*: set of all strings over {0}, $\{\epsilon, 0, 00, 000, \dots, \}$
- $(0+1)^*$: set of all strings over $\{0,1\}$
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, strings with no two consecutive 0s and no two conescutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

• bitstrings with 001 or 100 occurring as a substring

 bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*
- bitstrings with an even number of 1's

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do *not* contain 011 as a substring one answer: $1^*0^*(10^+)^*(1+\epsilon)$

- bitstrings with 001 or 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with 001 as a subsequence one answer: (0 + 1)*0(0 + 1)*0(0 + 1)*1(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do *not* contain 011 as a substring one answer: $1^*0^*(10^+)^*(1 + \epsilon)$
- Hard: bitstrings with an odd number of 1s *and* an odd number of 0s.

- bitstrings with 001 or 100 occurring as a substring one answer: $(0 + 1)^* 001(0 + 1)^* + (0 + 1)^* 100(0 + 1)^*$
- bitstrings with 001 as a subsequence one answer: $(0+1)^*0(0+1)^*0(0+1)^*1(0+1)^*$
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0^*1r where r is solution to previous part
- bitstrings that do *not* contain 011 as a substring one answer: $1^*0^*(10^+)^*(1+\epsilon)$
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
- Hard: English strings with all occurrences of "CS173" as a substring are before any occurence of "CS374" as a substring

Chekuri and Hulett (UIUC)

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity? By induction. On what?

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$

• $(rs)^*r = r(sr)^*$

$$(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$$

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

How do we prove it?

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is **not** a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is \overline{R}_1 (complement of R_1) regular?

Summary and Skills

Regular languages and expressions defined inductively via simple base cases and three operations: union, concatenation, Kleene star

Skills:

- Given a laguage L described in English, design a regular expression r such that L = L(r)
- Given a regular expression r, give an English description of the language L(r)

Later:

- see equivalence with DFAs, NFAs
- technique to prove that languages are not regular