
CS/ECE 374 A: Algorithms & Models of
Computation

Regular Languages and
Expressions
Lecture 2
January 23, 2025

Chekuri and Hulett (UIUC) CS/ECE 374 A 1 Spring 2025 1 / 20

Background

Fix some finite alphabet Σ.

Σ∗ is the set of all strings over Σ

A language over Σ is a subset of strings. That is, L ⊆ Σ∗

Σ∗ is countably infinite. Set of all languages = P(Σ∗) is
uncountably infinite

Each machine/program can be described by a string. Hence set
of machines/programs is countably infinite

Implies many/most languages that are too “complex” for
machines/programs

Question: What languages are easy? What languages should we
focus on? Can we classify them via various features?

Chekuri and Hulett (UIUC) CS/ECE 374 A 2 Spring 2025 2 / 20

Background

Fix some finite alphabet Σ.

Σ∗ is the set of all strings over Σ

A language over Σ is a subset of strings. That is, L ⊆ Σ∗

Σ∗ is countably infinite. Set of all languages = P(Σ∗) is
uncountably infinite

Each machine/program can be described by a string. Hence set
of machines/programs is countably infinite

Implies many/most languages that are too “complex” for
machines/programs

Question: What languages are easy? What languages should we
focus on? Can we classify them via various features?

Chekuri and Hulett (UIUC) CS/ECE 374 A 2 Spring 2025 2 / 20

Languages

Study of languages motivated by (among many others)

linguistics and natural language understanding

programming languages and logic

computation and machines

Intution: As ability of a language to express/model increases the
more complex/computationally hard it becomes.

Chekuri and Hulett (UIUC) CS/ECE 374 A 3 Spring 2025 3 / 20

Chomsky Hierarchy and Machines

regular

context free

context sensitive

Machines

recursively enumerable

Grammars

finite state automata (DFAs)

pushdown automata (PDAs)

linear bounded automata (LBAs)

Turing machine (TMss)phrase structured

context sensitive

context free

regular expressions

All Languages

Chekuri and Hulett (UIUC) CS/ECE 374 A 4 Spring 2025 4 / 20

Part I

Regular Languages

Chekuri and Hulett (UIUC) CS/ECE 374 A 5 Spring 2025 5 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined
inductively/recursively via the following rules:

∅ is a regular language

{ε} is a regular language

{a} is a regular language for each a ∈ Σ; here we are
interpreting a as a string of length 1

If L1, L2 are regular then L1 ∪ L2 is regular

If L1, L2 are regular then L1L2 is regular

If L is regular, then L∗ = ∪n≥0Ln is regular

Regular languages are closed under the operations of union,
concatenation and Kleene star.

Chekuri and Hulett (UIUC) CS/ECE 374 A 6 Spring 2025 6 / 20

Some simple regular languages

Lemma

If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: L = {a, abaab, aba}. L = {w | |w | ≤ 100}. Why?

Chekuri and Hulett (UIUC) CS/ECE 374 A 7 Spring 2025 7 / 20

Some simple regular languages

Lemma

If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: L = {a, abaab, aba}. L = {w | |w | ≤ 100}. Why?

Chekuri and Hulett (UIUC) CS/ECE 374 A 7 Spring 2025 7 / 20

More Examples

{w | w is a keyword in Python program}
{w | w is a valid date of the form mm/dd/yy}
{w | w describes a valid Roman numeral}
{I , II , III , IV ,V ,VI ,VII ,VIII , IX ,X ,XI , . . .}.
{w | w contains ”CS374” as a substring}.

Chekuri and Hulett (UIUC) CS/ECE 374 A 8 Spring 2025 8 / 20

Regular Languages

How expressive are these languages?

What can we use them for?

What are limitations? That is, what can be not express as
regular languages?

Chekuri and Hulett (UIUC) CS/ECE 374 A 9 Spring 2025 9 / 20

Part II

Regular Expressions

Chekuri and Hulett (UIUC) CS/ECE 374 A 10 Spring 2025 10 / 20

Regular Expressions

A way to denote/describe/represent regular languages

simple patterns to describe related strings

useful in

text search (editors, Unix/grep, emacs)
compilers: lexical analysis
compact way to represent interesting/useful languages
dates back to 50’s: Stephen Kleene
who has a star named after him.

Chekuri and Hulett (UIUC) CS/ECE 374 A 11 Spring 2025 11 / 20

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following:
Base cases:

∅ denotes the language ∅
ε denotes the language {ε}.
a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

(r1 + r2) denotes the language R1 ∪ R2

(r1r2) denotes the language R1R2

(r1)∗ denotes the language R∗
1

Chekuri and Hulett (UIUC) CS/ECE 374 A 12 Spring 2025 12 / 20

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following:
Base cases:

∅ denotes the language ∅
ε denotes the language {ε}.
a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

(r1 + r2) denotes the language R1 ∪ R2

(r1r2) denotes the language R1R2

(r1)∗ denotes the language R∗
1

Chekuri and Hulett (UIUC) CS/ECE 374 A 12 Spring 2025 12 / 20

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Examples: (0 + 1)∗, 010∗ + (110)∗, (10 + 110)∗(11 + 10)

Chekuri and Hulett (UIUC) CS/ECE 374 A 13 Spring 2025 13 / 20

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Examples: (0 + 1)∗, 010∗ + (110)∗, (10 + 110)∗(11 + 10)

Chekuri and Hulett (UIUC) CS/ECE 374 A 13 Spring 2025 13 / 20

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}

Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: r∗s + t = ((r∗)s) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 14 Spring 2025 14 / 20

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: r∗s + t = ((r∗)s) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 14 Spring 2025 14 / 20

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: r∗s + t = ((r∗)s) + t

Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 14 Spring 2025 14 / 20

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: r∗s + t = ((r∗)s) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 14 Spring 2025 14 / 20

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: r∗s + t = ((r∗)s) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 14 Spring 2025 14 / 20

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r.
Multiple regular expressions can denote the same language!
Example: (0 + 1) and (1 + 0) denote same language {0, 1}
Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).

Omit parenthesis by adopting precedence order: ∗, concat, +.
Example: r∗s + t = ((r∗)s) + t
Omit parenthesis by associativity of each of these operations.
Example: rst = (rs)t = r(st),
r + s + t = r + (s + t) = (r + s) + t.

Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

Other notation: r + s, r ∪ s, r |s all denote union. rs is
sometimes written as r·s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 14 Spring 2025 14 / 20

Skills

Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)

Chekuri and Hulett (UIUC) CS/ECE 374 A 15 Spring 2025 15 / 20

Skills

Given a language L “in mind” (say an English description) we
would like to write a regular expression for L (if possible)

Given a regular expression r we would like to “understand” L(r)
(say by giving an English description)

Chekuri and Hulett (UIUC) CS/ECE 374 A 15 Spring 2025 15 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }

(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}

(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗:

strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗:

strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0:

{}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}

(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0):

alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗:

strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Understanding regular expressions

0∗: set of all strings over {0}, {ε, 0, 00, 000, . . . , }
(0 + 1)∗: set of all strings over {0, 1}
(0 + 1)∗001(0 + 1)∗: strings with 001 as substring

0∗ + (0∗10∗10∗10∗)∗: strings with number of 1’s divisible by 3

∅0: {}
(ε + 1)(01)∗(ε + 0): alteranting 0s and 1s. Alternatively, strings
with no two consecutive 0s and no two conescutive 1s

(ε + 0)(1 + 10)∗: strings without two consecutive 0s.

Chekuri and Hulett (UIUC) CS/ECE 374 A 16 Spring 2025 16 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring

one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence

one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s

one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s

one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring

one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Creating regular expressions

bitstrings with 001 or 100 occurring as a substring
one answer: (0 + 1)∗001(0 + 1)∗ + (0 + 1)∗100(0 + 1)∗

bitstrings with 001 as a subsequence
one answer: (0 + 1)∗0(0 + 1)∗0(0 + 1)∗1(0 + 1)∗

bitstrings with an even number of 1’s
one answer: 0∗ + (0∗10∗10∗)∗

bitstrings with an odd number of 1’s
one answer: 0∗1r where r is solution to previous part

bitstrings that do not contain 011 as a substring
one answer: 1∗0∗(10+)∗(1 + ε)

Hard: bitstrings with an odd number of 1s and an odd number
of 0s.

Hard: English strings with all occurrences of “CS173” as a
substring are before any occurence of “CS374” as a substring

Chekuri and Hulett (UIUC) CS/ECE 374 A 17 Spring 2025 17 / 20

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Chekuri and Hulett (UIUC) CS/ECE 374 A 18 Spring 2025 18 / 20

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Chekuri and Hulett (UIUC) CS/ECE 374 A 18 Spring 2025 18 / 20

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?
By induction. On what?

Length of r since r is a string obtained from
specific inductive rules.

Chekuri and Hulett (UIUC) CS/ECE 374 A 18 Spring 2025 18 / 20

Regular expression identities

r∗r∗ = r∗ meaning for any regular expression r ,
L(r∗r∗) = L(r∗)

(r∗)∗ = r∗

rr∗ = r∗r
(rs)∗r = r(sr)∗

(r + s)∗ = (r∗s∗)∗ = (r∗ + s∗)∗ = (r + s∗)∗ = . . .

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from
specific inductive rules.

Chekuri and Hulett (UIUC) CS/ECE 374 A 18 Spring 2025 18 / 20

A non-regular language and other closure
properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem

L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Chekuri and Hulett (UIUC) CS/ECE 374 A 19 Spring 2025 19 / 20

A non-regular language and other closure
properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem

L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Chekuri and Hulett (UIUC) CS/ECE 374 A 19 Spring 2025 19 / 20

A non-regular language and other closure
properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem

L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Chekuri and Hulett (UIUC) CS/ECE 374 A 19 Spring 2025 19 / 20

A non-regular language and other closure
properties

Consider L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}.

Theorem

L is not a regular language.

How do we prove it?

Other questions:

Suppose R1 is regular and R2 is regular. Is R1 ∩ R2 regular?

Suppose R1 is regular is R̄1 (complement of R1) regular?

Chekuri and Hulett (UIUC) CS/ECE 374 A 19 Spring 2025 19 / 20

Summary and Skills

Regular languages and expressions defined inductively via simple base
cases and three operations: union, concatenation, Kleene star

Skills:

Given a laguage L described in English, design a regular
expression r such that L = L(r)

Given a regular expression r , give an English description of the
language L(r)

Later:

see equivalence with DFAs, NFAs

technique to prove that languages are not regular

Chekuri and Hulett (UIUC) CS/ECE 374 A 20 Spring 2025 20 / 20

	Regular Languages
	Regular Expressions

