Nondeterministic. Finite Automata (NFA)
- allow choices (and E-transitions)
Ex1 all strings ending with G1
29 1001 3 90 91 3 92
90-90 = 90 or 91 ? S(90,0) = 90 or 91?
st(as,1001) but valid NFA
Pag my does is man; In an in
(\$ (a.e. lea) = {accept iff } posts from start stock. to some accepting stake
neject iff (y) path from strut state. end in non-accept state
not realistic machine! ability to guess
Ex2 0* (01)* 1*
3 € 3 € 3 € 3 € 3 € 3 € 3 € 3 € 3 € 3 €
E-transitions don't consume input
Formal Defin An NFA is M= (Q, E, s, 8, A)
like before ASB
except 8: $Q \times (\Sigma \cup \{E\}) \rightarrow 2^{Q}$

except
$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow Z^Q$$

power set $\delta(q_0, 0) = \{q_0, q_1\}$.

 $\delta(q_1, 0) = \emptyset$

Ex $2: \delta(q_0, \epsilon) = \{q_1\}$

Def for $q \in Q$, define ϵ -reach(q) recursively:

(i) q is in ϵ -reach(q)

(ii) if q' is in ϵ -reach(q)

(iii) nothing else is in.

Ex $2: \epsilon$ -reach(q_0) = $\{q_0, q_1, q_3\}$
 ϵ -reach(q_0) = $\{q_0, q_1, q_3\}$.

Def Define extended transition for $S^*: Q \times \Sigma^* \rightarrow 2^Q$

recursively:

(i) $S^*(q_1, \epsilon) = \epsilon$ -reach(q_0)

(ii) if $\chi = ay$ ($a \in \Sigma, y \in \Sigma^*$), $\forall q \in Q_0$
 $S^*(q_1, x) = \bigcup$
 $S^*(q_1, x) = \bigcup$
 $S^*(q_1, x) = \sum_{q_1, q_2} S^*(q_1, x)$
 $S^*(q_1, x) = \sum_{q_1, q_2} S^*(q_1, x)$

