Given transition function \(\delta^* : Q \times \Sigma^* \rightarrow Q \), define its extended transition function inductively:

(i) \(\delta^*(q, \varepsilon) = q \)
(ii) \(\delta^*(q, x) = \delta^*(\delta(q, y), y) \) if \(x = ay \) with \(a \in \Sigma \) and \(y \in \Sigma^* \)

Def:

\(M \) accepts \(x \) iff \(\delta^*(q_0, x) \in A \).

Define \(L(M) = \{ x \in \Sigma^* : M \text{ accepts } x \} \).

Exs:

\(\Sigma = \{0, 1\} \).

a) all strings beginning with 001

b) all strings containing 001 as a substring

Clarity:
- Drop 6 lowest means 4 written HW probs + 2 GPSs
- \(q_3 \) found 001
- \(q_2 \) just seen 00 but not 001
- \(q_1 \) just seen 0 but not in \(q_2, q_3 \)
- \(q_0 \) none of above
c) all strings not containing 001

\[q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \]

\(q_0 : \text{none of above} \)

d) all strings with even \# 0's and odd \# 1's

\[\text{even}, \text{even} \rightarrow 0 \\
\text{even}, \text{odd} 1 \rightarrow 0 \\
\text{odd}, \text{even} 0 \rightarrow 1 \\
\text{odd}, \text{odd} 1 \rightarrow 0 \]

e) strings with length divisible by 5

\[\text{0 mod 5} \rightarrow 0 \\
\text{1 mod 5} \rightarrow 1 \\
\text{2 mod 5} \rightarrow 0 \\
\text{3 mod 5} \rightarrow 1 \\
\text{4 mod 5} \rightarrow 0 \]

f) binary representation of all numbers divisible by 5

\(Q = \{0, 1, 2, 3, 4\} \)

eg. 1101, 1010, 1111, ...

\(+Z \text{ rewrite rule: } +2 \text{ GPS}_s \) (see course web page)
\[Q = \{ 0, 1, 2, 3, 4 \} \\
A = \{ 0 \} \\
\delta(i, a) = (2i + a) \mod 5 \]

5 \times 2 + 1

9) all strings where 5th last symbol is 0.

\[\text{e.g.} \quad 0110111000 \]

\[Q = \{ \text{all strings of length 5} \} \quad |Q| = 32 \]

\[S = 11111 \]

\[\delta(a_1a_2a_3a_4a_5, a) = a_2a_3a_4a_5a \quad \forall a_1, a_5 \in \{ 0, 1 \} \]

\[A = \{ a_1a_2a_3a_4a_5 : a_1 = 0 \} \]

Closure Properties

Thm: If \(L \) is accepted by some DFA \(M \),

then its complement \(\overline{L} \) is also accepted

by some DFA \(M' \).

Pf: idea - take complement of accepting states

Given \(M = (Q, \Sigma, s, A, \delta) \),

\[101001 \]
Given \(M = (Q, \Sigma, s, A, \delta) \),

Construct \(M' = (Q, \Sigma, s', A', \delta) \)

where \(A' = Q \setminus A \)

Then \(x \in L(M') \iff \delta^*(s, x) \in A' \)

\(\iff \delta^*(s, x) \notin A \)

\(\iff x \notin L(M) = L \).

\[\therefore L(M') = \overline{L}. \]

\[\square \]

Thm

If \(L_1 \) is accepted by DFA \(M_1 \), \(L_2 \) " " " " " \(M_2 \),

then \(L_1 \cap L_2 \) is also accepted by some DFA \(M' \).

PF:

"remember" a pair of states

Given \(M_1 = (Q_1, \Sigma, s_1, A_1, \delta_1) \)

\(M_2 = (Q_2, \Sigma, s_2, A_2, \delta_2) \)

Construct \(M' = (Q', \Sigma, s', A', \delta') \).

where \(Q' = Q_1 \times Q_2 \)

\(s' = (s_1, s_2) \)

\(A' = A_1 \times A_2 = \{ (q_1, q_2) : q_1 \in A_1 \text{ and } q_2 \in A_2 \} \)

\[\delta'((q_1, q_2), \alpha) = (\delta_1(q_1, \alpha), \delta_2(q_2, \alpha)) \]

\[\delta'((q_1, q_2), x) = (\delta_1^*(q_1, x), \delta_2^*(q_2, x)) \]

Lemma

PF: by induction (omitted). \(\square \)
$$x \in L(M') \iff \delta^*((s_1, s_2), x) \in A_1 \times A_2$$

$$\iff (\delta^*(s, x), \delta^*_{A_2}(s_x))$$

$$\iff \delta^*(s_1, x) \in A_1 \text{ and } \delta^*_2(s_2, x) \in A_2$$

$$\iff x \in L(M_1) \text{ and } x \in L(M_2)$$

$$\iff x \in L_1 \cap L_2.$$

Ex

all strings containing 001 and having odd # 0's.

M_1:

M_2:

M':

\[\delta((q_1, \text{EVEN}), 0) = (\delta_1(q_1, 0), \delta_2(\text{EVEN}, 0)) = (q_2, \text{ODD})\]

Cor

If \(L_1 \) accepted by some DFA, then so is \(L_1 \cup L_2 \).

\(L_1 \cap L_2 \)

(\(L_1 \cap L_2 \))

(De Morgan's law)