Shortest Paths Cont'd:

Last Lec: Single Source Shortert Path (555P) Given a directed G=(V,E), w(e) =0, YeEE

Find, YUEV S-V shartest path length = minimum distance trans 5 to 0 = mindist (5, v).

Obsenvations:

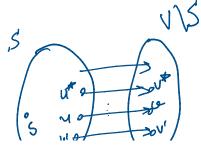
1) No vertex repeated

Suppose, shortest path has u as an intermediate vertex. (2)

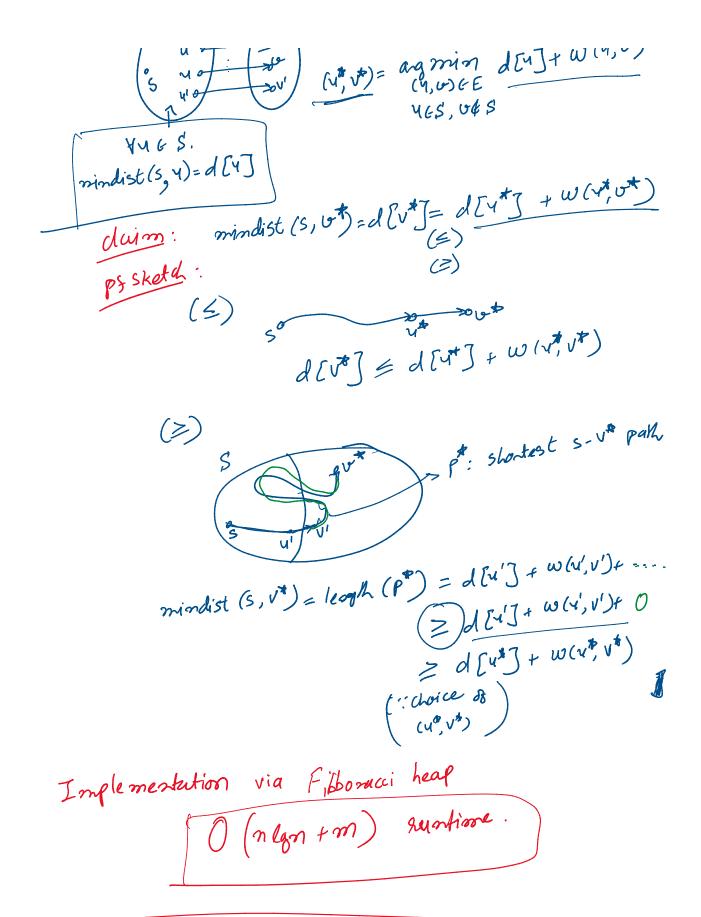
It out hen we get shortest 5-4 a smaller s-6 park path

* Dijksha's Ah'm (153):

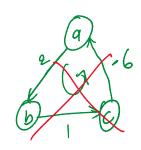
Idea: Find next nearest vertex, starting trom s itselt.



d[4]+ w(4,0)



eg.



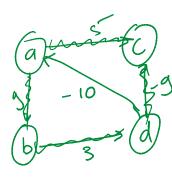
$$mindist(a,b) = 2$$
 (4->b)

$$=-1$$
 (9,5,c,9,5)

$$N_0$$
 n

Assumption: NO neg. weight cycle.

2.9.



5=a

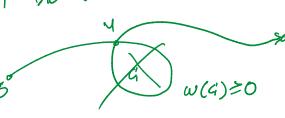
$$d(c, \pm) = 5$$

$$d(\varepsilon, 2) = 5$$

$$d(c, 3) = 3$$

& Bellown-Ford (1956): Dyournie Prog.

Obs: Still no ventex repeats.



any slatext park

> Subproblem Det: YUEV, 0 = LEN

¥46 V, ~ -> Subproblem Det:

d(v,e): min distance from 5 to 0 using 'at nost ledges."

Ans: d(v,n), yorky

YL \rightarrow Base (ase: d(s,l)=0

yo≠5, d(0,0) = 0

-> Formula: S (l-1) edges 4

 $d(v,l) = \min \begin{cases} d(v,l-1) \\ \min \\ w(v,w) + d(v,l-1) \end{cases}$ $\begin{cases} w(v,w) + d(v,l-1) \\ y(v,w) \notin E \end{cases}$ $\Rightarrow \text{ Evaluation Order: Increasing order } delta \text{ } l.$

-> Running Time: For a fixed l=1,2...n

time / vertex O(|in-neighbors(v)|)time too all: $O(\sum_{v \in V} |\text{in-neigh}(v)|)$ vertices.

Total time: $O(n) \cdot O(m) = O(m \cdot n)$.

A diff when BO

Aside:

daim: G has no neg weight cycle

 $d(v,n) = d(v,n-1) \forall v \in V$

Pf sketch: (=) easy (exe)

(E) $d(V,n) = d(V,n-1) \forall v \Rightarrow \exists neg weight$ (gcle.

 $d(v, n-1) = d(v, n) \leq d(y, n-1) + w(y, v)$ C: Lyphais

=> [w(4,0)≥ d(4,n-1) - d(4,n-1)] w(a,b) = d(b,m+1) - d(a,m-1) $|^{t}w(b,c) \ge |^{t}d(cm-1) - d(b,m-1)$ + w(c, a) ≥ td (g, m-1) - d (c, m-1) $\omega(4) = 0$

* All Pairs shortest Paths:

Given directed graph 6=(V, E) by weights on edges. Find, Y4,0EV, 4-v shortest puth distance.

k non-neg weigets: w(e)≥0 YeEE

Run Dijkstra Starting at every vater.

n limes Dijksta.

 $n \left(n \log n + m \right) = O(n^2 \log n + m n)$

$$n$$
 times $vision$

$$\eta \cdot O(n \lg n + mn) = O(n^2 \lg n + mn)$$

$$\leq O(n^3)$$

* Neg weights: w(e) ER, teEE

$$V: \{1, 2, 3, \dots, n\}$$
 (number the vartices)

Method 1: (BF Stole DP)

> Subproblem Det: 1, j E V, l=0,..., n

d(i,j,l): min distance trons i to j using at nost l edges.

> Ars: Wije V, d(i,i,n)

 \Rightarrow Barl (are: d(i,i,l) = 0 $\forall i \in V$ d(i,j,0)=0 Vi+j EV

-> Formula: ia (e-1) edges &

 $d(i, j, l) = \min \begin{cases} d(i, j, l-1) \\ min \\ d(i, k, l-1) + w(k, j) \end{cases}$ $(K, j) \in \mathbb{R}$ $(K, j) \in \mathbb{R}$ $(K, j) \in \mathbb{R}$ $(K, j) \in \mathbb{R}$

Runhime:
$$O(n^3 \cdot \eta) = O(n^h)$$

* subproblems

-> Better Formly =

 $d(i,j,l) = \min_{K \in V} d(i,K,l_2) + (K,j,l_2)$

l=1,2,4,8,16,.., 2h suttices Suppose n=2h # possible values de l = log n = h.

Rump time: $O(n^2 \log n \cdot n) = O(n^3 \cdot \log n)$ # sub problems

Method 2: Flogd-Warshall (1964): (DP).

Number the vertices 1,2,..., or

 $V = \{1, 2, 3, ..., n\}$

-> Subproblem Det.: YisiEV; K=0,1,..., m

11: - 1. min distance troon i toj

d(i,j,k): min distance trom i toj s.t. all interprediate vertices on his path is thorn {1,..., k} vertices. (k=0, implies empty set)

(k=0 implies empty set)

(k=0 implies empty set)

(intermediate ventex) $\rightarrow Ans: d(i,j,n)$ -> Base Care: d(i,i,k)=0 VitV VK=0,1,..., $\forall i \neq j \in V$, d(i,j,0) = w(i,j) if $c(i,j) \in E$ = W 0.W. > Formula: d(i,j,K)= min) d(i,j,K-1), d(i,K,K-1)+d(K,j,K+1) use k: £ {1,..., k-1} $O(1) = O(n^3)!$

> Runtime:

> Run time:
$$O(\eta^3. O(1)) = U(\eta^3. 1)$$
subpab. Hime/subpab.

O(n^{2.3333}) 9 OPEN!

* History: