
Graph Algorithms

Graph

G= (V, E) V: set & vertices

E: set so edges.

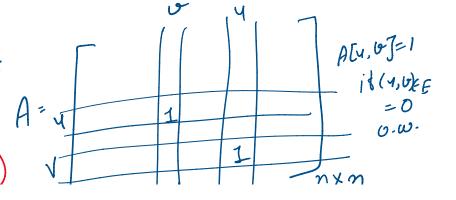
1V1=n 1E1=m (n-1) < m < n2

V={a,b,c,d,e}

E={(a,b),(c,q), (b.d), (a,d), (d, e), (e, b), (c,d) }

E={ab, ac, ad, bc, dc, ce, be}

Appl'n: facebook groph, road n/w, internet


A Basic Concept: path, Connected, cydes.

* Representation:

- Adjacency Matrix

(if 6 undirected

tic satisx)

A is symmetric satrex) 1 look up line O(1). space = o(ne) Adj (4) = { (4, 6) (E } - Adjacency list space: 0 (E Adi(4)) look up hime =0(m+n)O(m). (it sparce graph)

m << n2

* Basic que:

- it I a path from stot, or belm set
- it 6 is connected!
- Ventices reachable from 5?

& Basic Search Algo: Breadth First Search (BFS) Depth First search (DFS).

Discover order.

Finish order

= post order.

& Eruph (Extension)

start

O:AXXXXX

No forward edges in BFS free

& Non-tree edges:

edge from a node to one of it's ancestors.

" decsendents. - Back edges: - Forward edges: edge "

- Cross edges: all other ron-tree edges.

* Implementation: BFS (6,5)
1) idea 1: Mark VISIES
1) idea 2: Use a v data structure Cs.
1) Let 1 (e V CAD) UM make V.
9) that sin B. Mark S. level
3). While $0 \neq \emptyset$ { lead where $0 \neq \emptyset$ } remove attentex $0 \neq \emptyset$ } $0 \neq \emptyset$
4) remove awards 4
ton each GE Harca
if a is unimarked.
insert & in On. Mark o. at the end
parent [v] = 4. level [v] = level [v]+1
Runtione: steps 5-7 O(Adj(4))
Kuntione: Steps Total time $O\left(\frac{5}{4t\sqrt{1}}\right)Adj(4) + An)$
$= \bigcirc (m + n)$
global time = I
DFS(G, Y) { Nomilar, with different data structure. Stack Nomilar, with different data structure.
// similar, with different
or reco
1. min and [v] = time ff.

- 1) Mark 4. discovered [v] = time ff. 2) ton & EAdi(u) do { it or is unmarked.

 DFS (G, b)

 Paret [v] = 4
 - 6) Finished [4] = Hime + f

031: Shortest path distance from 5 tot.