Graph Algorithms

Graph $G = (V, E)$

- V: set of vertices
- E: set of edges

$|V| = n$
$|E| = m$
$(n-1) \leq m \leq n^2$

$V = \{a, b, c, d, e\}$
$E = \{(a, b), (c, a), (b, d), (a, d), (d, e), (e, b), (c, d)\}$

Application: Facebook graph, social network, internet

* Basic concepts: path, connected, cycles.

* Representation:
 - Adjacency Matrix

 $A = \begin{bmatrix}
 0 & 1 & 1 & 0 & 0 \\
 1 & 0 & 1 & 1 & 0 \\
 1 & 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 1 \\
 0 & 0 & 0 & 1 & 0 \\
 \end{bmatrix}$

 (directed and undirected, matrix representation)
(id 6 underscored)
A is symmetric matrix

\[\text{space} = O(n^2) \quad \text{look up time} \quad O(1). \]

- Adjacency list

\[
\begin{array}{c|ccc}
\text{a} & \text{b} & \text{d} \\
\text{b} & \text{d} & \\
\text{c} & \text{d} & \text{a} \\
\text{d} & & \\
\text{e} & & \\
\end{array}
\]

\[\text{Adj}(u) = \{v \mid (u, v) \in \mathcal{E} \} \]

\[\text{space} : O\left(\sum_{u \in V} |\text{Adj}(u)| \right) \]

\[= O(m + n) \]

(it space graph)

\[m \ll n^2 \]

* Basic que:
- if \(G \) a path from \(s \) to \(t \), on \(bel^m s \ t \)
- if \(G \) is connected?
- vertices reachable from \(s \)?

* Basic Search Algo:
- Breadth First Search (BFS)
- Depth First Search (DFS)
Eg. Tree

BFS

DF

level 0
1
2
3

1

2

3

4

5

6

7

8

9

10

1

2

3

4

Discover order:
- Breadth traversal

Finish order:
- Post order.

Graph (Extension)

start

BFS

NO forward edges
in BFS tree.

DFS

descendants.

Non-tree edges:

- Back edges: edge from a node to one of its ancestors.
- Forward edges: edge to a descendant.
- Cross edges: all other non-tree edges.
Implementation: \(\text{BFS}(G, s) \)

// idea 1: Mark visited vertices.

// idea 2: Use a data structure \(Q \).

\(Q \leftarrow \) 1) for \(u \in V \), do unmark \(u \).

2) Insert \(s \) in \(Q \). Mark \(s \). level \([s]\) = 0

3) while \(Q \neq \emptyset \) do

4) remove a vertex \(u \) from \(Q \).

5) for each \(v \in \text{Adj}(u) \) do if \(v \) is unmarked

6) insert \(v \) in \(Q \). Mark \(v \). parent \([v]\) = \(u \). level \([v]\) = level \([u]\) + 1

Runtime: steps \(\leq O(1 + \text{Adj}(u)) \)

Total time \(O(\sum_{u \in V} |\text{Adj}(u)|) + O(n) \)

= \(O(m + n) \)

Global time = 1

DFS(\(G, u \))

// similar, with different data structure: stack or recursion.

\[\text{DFS}(G, u) \]
1) Mark u, discovered \([u] = \text{time} + t\).
2) for \(v \in \text{Adj}(u)\) do \\
3) if \(v\) is unmarked \\
4) \quad \text{DFS}(G, v) \\
5) \quad \text{Parm} [v] = u \\
6) \quad \text{Finished} \[u] = \text{time} + t

\[a1\]: Shortest path distance from s to t.