More DP

"Try all possibilities"

Recusive Algim > Memoize > Evaluation order Herative algim

Probl: Max Weight Independent set (MWIS) on trees. root3 Given: T= (V, E) acyclic tor to $v \in V, w(v) \geq 0$ Find SEV Hut saxisizes Zw(0) 0ES S.t. YU,0ES, (4,6) EE. 8+1+1+7+6+4=27 ★ Observations: 6= root - either to is in opt. sol or sot. - & not in opt solm recurse on subfrees rooked at children Ale. F. J. 2 - ce is in opt sol'm 0 recurse on subtrees rooted at grand children ' 0 0 2 2 1 0

Mm & I. EVI, ... Vm] = post-order traversal T.

$$O(n\{1: [V_{1}, \dots, V_{n}] = post: one det
[2: jour is to m
[3: it to is a least then $A[tr_{i}] = w(w_{i})$
[4: else
 $O(n) \{A[tr_{i}] = max \}$ $Sidd(d)$
 $S. Return A[tr_{n}]$
Run Time: # subpoblems = $O(n)$
 $hime per subpiblem = O(n)$
 $Better Amalysis: How many hime $A[tr_{i}]$ appears
 $max i = 0$ mention $u \in V$
Twice! Once for the parent do u e
 $om(e for the grand panet & u.$
 $\Rightarrow O(n)$
Amalysis.
Puble: Subset Sum$$$

Puble: Subset Sum
Given numbers
$$a_{1}, a_{2}, \ldots, a_{n} \notin T$$

check is $\exists S \subseteq \{1, \ldots, m\}$ s.t. $\underset{i \in S}{Z} a_{i} = T$.
 OTP : TRUE ON FALSE.
 $e_{3} \cdot 1, 10, 5, 15, 20, 2, 30, 13$ $T=22$
TRUE
Define Subproblem: $0 \leq i \leq n$, $0 \leq t \leq T$
 $SS(i,t) = twe ist $a_{1}, \ldots a_{i}$ has a
subset summing to t.$

Base case: SS(0,0) = trueSS(0,t) = table $\forall t \ge I$.

Reconside Some formula:

$$a_{i}, \dots, a_{i}$$
 t
 t
 $s_{i} = \sum_{i \in I} SS(i, t) = \sum_{i \in I} SS(i-1, t) \vee SS(i-1, t-a_{i})$
 $s_{i} \in a_{i} \leq t$
 $SS(i-1, t)$

Evaluation orden:
increasing order & i.
for each i, any order of t.
Run Time: # subproblem: O(nT)
time per subproblem: O(1)
D(nT) time.

$$T = e^{kT}$$

Rock: T can be very large untartimately.
poly in ne log T? Big open que
 $P = NP$?

Variants :

Prob 3: Parsing:
Given a CFG
$$G = (V, T, P, S)$$
 f
shird $x = a_1 \dots a_n \in T^k$
where is $x \in L(G)$?

e.g.

$$S \rightarrow AS| AB$$

 $A \rightarrow BC$
 $A \rightarrow BC$
 $S \rightarrow SA| AC | I$
 $C \rightarrow AB| CC | 0$
Assume: every production rule in P
is do type
 $A \rightarrow BC \\ A \rightarrow BC \\ A \rightarrow AB \\ CNF$

* (KY Alg'm (cocke - Younger - Kassami '70)

() Define subprob.: $1 \le i \le j \le n$, $A \in V$ $f(i, j, A) = true iR a_{i} \dots q_{j}$ can be generated starting at A. Ans: f(i, n, 5) a_{i} be generated by A?

Base care:

$$G_i$$
 be generated by Π :
 $f(i,i,A) = \text{true iff} (A \rightarrow a_i) \in P$.
 $= \text{fulse } O.W.$

Recursive farmula:
$$i < j$$

 $S(i, j, A):$
 $ai - aj$ be gen. by
 $Glavire S:$
 $- which production such
to use $A \rightarrow BC$
 $- split$
 $ai - ak a_{kn} - aj$, $i = k = j - i$
 $S(i, j, A) = V$
 $S(i, j, A) = V$
 $S(i, j, A) = V$
 $A \rightarrow BC$
 $A \rightarrow BC$$

Run time: # sub problems: O(nº. IVI) time per subpolo: O(n. IPI) $\Rightarrow O(n^3. |V|. |P|)$ Romk: Vuliant'75 O(IPI m^{2.373}) for most PL there are linear-time pasing elg'm.