Prove that the following languages are undecidable.

See outline of how to solve such problems in the original problem set.

1. $\text{AcceptIllini} := \{\langle M \rangle | M \text{ accepts the string } ILLINI\}$

Solution:
For the sake of argument, suppose there is an algorithm $\text{DecideAcceptIllini}$ that correctly decides the language AcceptIllini. Then we can solve the halting problem as follows:

$\text{DecideHalt}(\langle M, w \rangle)$:

Encode the following Turing machine M':

$M'(x)$:

- run M on input w
- return True

if $\text{DecideAcceptIllini}(\langle M' \rangle)$
- return True
else
- return False

We prove this reduction correct as follows:

\implies Suppose M halts on input w.
Then M' accepts every input string x.
In particular, M' accepts the string $ILLINI$.
So $\text{DecideAcceptIllini}$ accepts the encoding $\langle M' \rangle$.
So DecideHalt correctly accepts the encoding $\langle M, w \rangle$.

\impliedby Suppose M does not halt on input w.
Then M' diverges on every input string x.
In particular, M' does not accept the string $ILLINI$.
So $\text{DecideAcceptIllini}$ rejects the encoding $\langle M' \rangle$.
So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable. We conclude that the algorithm $\text{DecideAcceptIllini}$ does not exist.

As usual for undecidability proofs, this proof invokes four distinct Turing machines:

- The hypothetical algorithm $\text{DecideAcceptIllini}$.
- The new algorithm DecideHalt that we construct in the solution.
- The arbitrary machine M whose encoding is part of the input to DecideHalt.
- The special machine M' whose encoding DecideHalt constructs (from the encoding of M and w) and then passes to $\text{DecideAcceptIllini}$.

2. $\text{AcceptThree} := \{\langle M \rangle | M \text{ accepts exactly three strings}\}$
Solution:

For the sake of argument, suppose there is an algorithm DecideAcceptThree that correctly decides the language AcceptThree. Then we can solve the halting problem as follows:

\[
\text{DecideHalt}(\langle M, w \rangle):
\]

Encode the following Turing machine \(M' \):
\[
M'(x):
\begin{align*}
&\text{run } M \text{ on input } w \\
&\text{if } x = \varepsilon \text{ or } x = 0 \text{ or } x = 1 \\
&\quad \text{return True} \\
&\text{else} \\
&\quad \text{return False}
\end{align*}
\]

if DecideAcceptThree(\(\langle M' \rangle \))
return True
else
return False

We prove this reduction correct as follows:

\[\implies\] Suppose \(M \) halts on input \(w \).
Then \(M' \) accepts exactly three strings: \(\varepsilon, 0, \) and \(1 \).
So DecideAcceptThree accepts the encoding \(\langle M' \rangle \).
So DecideHalt correctly accepts the encoding \(\langle M, w \rangle \).

\[\iff\] Suppose \(M \) does not halt on input \(w \).
Then \(M' \) diverges on every input string \(x \).
In particular, \(M' \) does not accept exactly three strings (because \(0 \neq 3 \)).
So DecideAcceptThree rejects the encoding \(\langle M' \rangle \).
So DecideHalt correctly rejects the encoding \(\langle M, w \rangle \).

In both cases, DecideHalt is correct. But that’s impossible, because HALT is undecidable. We conclude that the algorithm DecideAcceptThree does not exist.

3 \hspace{1cm} \text{AcceptPalindrome} := \{ \langle M \rangle \mid M \text{ accepts at least one palindrome} \}

Solution:

For the sake of argument, suppose there is an algorithm DecideAcceptPalindrome that correctly decides the language AcceptPalindrome. Then we can solve the halting problem as follows:

\[
\text{DecideHalt}(\langle M, w \rangle):
\]

Encode the following Turing machine \(M' \):
\[
M'(x):
\begin{align*}
&\text{run } M \text{ on input } w \\
&\text{return True}
\end{align*}
\]

if DecideAcceptPalindrome(\(\langle M' \rangle \))
return True
else
return False
We prove this reduction correct as follows:

\[\implies\] Suppose \(M \) halts on input \(w \).
Then \(M' \) accepts every input string \(x \).
In particular, \(M' \) accepts the palindrome \(RACECAR \).
So DecideAcceptPalindrome accepts the encoding \(\langle M' \rangle \).
So DecideHalt correctly accepts the encoding \(\langle M, w \rangle \).

\[\iff\] Suppose \(M \) does not halt on input \(w \).
Then \(M' \) diverges on every input string \(x \).
In particular, \(M' \) does not accept any palindromes.
So DecideAcceptPalindrome rejects the encoding \(\langle M' \rangle \).
So DecideHalt correctly rejects the encoding \(\langle M, w \rangle \).

In both cases, DecideHalt is correct. But that’s impossible, because \(\text{HALT} \) is undecidable. We conclude that the algorithm DecideAcceptPalindrome does not exist.

Yes, this is \textit{exactly} the same proof as for problem 1.