Prove that the following languages are undecidable.
See outline of how to solve such problems in the original problem set.
1 AcceptIllini $:=\{\langle M\rangle \mid M$ accepts the string $I L L I N I\}$

Solution:

For the sake of argument, suppose there is an algorithm DecideAcceptIllini that correctly decides the language AcceptIllini. Then we can solve the halting problem as follows:

```
DecideHalt \((\langle M, w\rangle)\) :
    Encode the following Turing machine \(M^{\prime}\) :
```



```
    if DecideAcceptIllini \(\left(\left\langle M^{\prime}\right\rangle\right)\)
        return True
    else
        return False
```

We prove this reduction correct as follows:
$\Longrightarrow \quad$ Suppose M halts on input w.
Then M^{\prime} accepts every input string x.
In particular, M^{\prime} accepts the string ILLINI.
So DecideAcceptIllini accepts the encoding $\left\langle M^{\prime}\right\rangle$.
So DecideHalt correctly accepts the encoding $\langle M, w\rangle$.
\Longleftarrow Suppose M does not halt on input w.
Then M^{\prime} diverges on every input string x.
In particular, M^{\prime} does not accept the string ILLINI.
So DecideAcceptIllini rejects the encoding $\left\langle M^{\prime}\right\rangle$.
So DecideHalt correctly rejects the encoding $\langle M, w\rangle$.
In both cases, DecideHalt is correct. But that's impossible, because Halt is undecidable. We conclude that the algorithm DecideAcceptIllini does not exist.

As usual for undecidablility proofs, this proof invokes four distinct Turing machines:

- The hypothetical algorithm DecideAcceptIllini.
- The new algorithm DecideHalt that we construct in the solution.
- The arbitrary machine M whose encoding is part of the input to DecideHalt.
- The special machine M^{\prime} whose encoding DecideHalt constructs (from the encoding of M and w) and then passes to DecideAcceptIllini.

2 AcceptThree $:=\{\langle M\rangle \mid M$ accepts exactly three strings $\}$

Solution:

For the sake of argument, suppose there is an algorithm DecideAcceptThree that correctly decides the language AcceptThree. Then we can solve the halting problem as follows:

```
DecideHalt \((\langle M, w\rangle)\) :
    Encode the following Turing machine \(M^{\prime}\) :
    \(M^{\prime}(x)\) :
        run \(M\) on input \(w\)
        if \(x=\varepsilon\) or \(x=0\) or \(x=1\)
        return True
        else
        return FALSE
    if DecideAcceptThree \(\left(\left\langle M^{\prime}\right\rangle\right)\)
        return True
    else
        return FALSE
```

We prove this reduction correct as follows:
$\Longrightarrow \quad$ Suppose M halts on input w.
Then M^{\prime} accepts exactly three strings: $\varepsilon, 0$, and 1 .
So DecideAcceptThree accepts the encoding $\left\langle M^{\prime}\right\rangle$.
So DecideHalt correctly accepts the encoding $\langle M, w\rangle$.
\Longleftarrow Suppose M does not halt on input w.
Then M^{\prime} diverges on every input string x.
In particular, M^{\prime} does not accept exactly three strings (because $0 \neq 3$).
So DecideAcceptThree rejects the encoding $\left\langle M^{\prime}\right\rangle$.
So DecideHalt correctly rejects the encoding $\langle M, w\rangle$.
In both cases, DecideHalt is correct. But that's impossible, because Halt is undecidable. We conclude that the algorithm DecideAcceptThree does not exist.

3 AcceptPalindrome $:=\{\langle M\rangle \mid M$ accepts at least one palindrome $\}$

Solution:

For the sake of argument, suppose there is an algorithm DecideAcceptPalindrome that correctly decides the language AcceptPalindrome. Then we can solve the halting problem as follows:

```
DEcideHalt(\langleM,w\rangle):
    Encode the following Turing machine M':
        M'(x):
        run }M\mathrm{ on input w
        return True
        if DecideAcceptPalindrome(\langle }\mp@subsup{M}{}{\prime}\rangle
        return TRUE
    else
        return FALSE
```

We prove this reduction correct as follows:
$\Longrightarrow \quad$ Suppose M halts on input w.
Then M^{\prime} accepts every input string x.
In particular, M^{\prime} accepts the palindrome $R A C E C A R$.
So DecideAcceptPalindrome accepts the encoding $\left\langle M^{\prime}\right\rangle$.
So DecideHalt correctly accepts the encoding $\langle M, w\rangle$.
\Longleftarrow Suppose M does not halt on input w.
Then M^{\prime} diverges on every input string x.
In particular, M^{\prime} does not accept any palindromes.
So DecideAcceptPalindrome rejects the encoding $\left\langle M^{\prime}\right\rangle$.
So DecideHalt correctly rejects the encoding $\langle M, w\rangle$.
In both cases, DecideHalt is correct. But that's impossible, because Halt is undecidable. We conclude that the algorithm DecideAcceptPalindrome does not exist.
Yes, this is exactly the same proof as for problem 1.

