Prove that each of the following problems is NP-hard.
1 Prove that the following problem is NP-hard: Given an undirected graph G, find any integer $k>374$ such that G has a proper coloring with k colors but G does not have a proper coloring with $k-374$ colors.

Solution:

Let G^{\prime} be the union of 374 copies of G, with additional edges between every vertex of each copy and every vertex in every other copy. Given G, we can easily build G^{\prime} in polynomial time by brute force. Let $\chi(G)$ and $\chi\left(G^{\prime}\right)$ denote the minimum number of colors in any proper coloring of G, and define $\chi\left(G^{\prime}\right)$ similarly.
\Longrightarrow Fix any coloring of G with $\chi(G)$ colors. We can obtain a proper coloring of G^{\prime} with $374 \cdot \chi(G)$ colors, by using a distinct set of $\chi(G)$ colors in each copy of G. Thus, $\chi\left(G^{\prime}\right) \leq 374 \cdot \chi(G)$.
\Longleftarrow Now fix any coloring of G^{\prime} with $\chi\left(G^{\prime}\right)$ colors. Each copy of G in G^{\prime} must use its own distinct set of colors, so at least one copy of G uses at most $\left\lfloor\chi\left(G^{\prime}\right) / 374\right\rfloor$ colors. Thus, $\chi(G) \leq\left\lfloor\chi\left(G^{\prime}\right) / 374\right\rfloor$.

These two observations immediately imply that $\chi\left(G^{\prime}\right)=374 \cdot \chi(G)$. It follows that if k is an integer such that $k-374<\chi\left(G^{\prime}\right) \leq k$, then $\chi(G)=\chi\left(G^{\prime}\right) / 374=\lceil k / 374\rceil$. Thus, if we could compute such an integer k in polynomial time, we could compute $\chi(G)$ in polynomial time. But computing $\chi(G)$ is NP-hard!

2 A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different sets of colors; however, these two sets may share one color. In a strong bicoloring, the endpoints of each edge must use distinct sets of colors; that is, they must use four colors altogether. Every strong bicoloring is also a weak bicoloring.
2.A. Prove that finding the minimum number of colors in a weak bicoloring of a given graph is NP-hard.

Solution:

It suffices to prove that deciding whether a graph has a weak bicoloring with three colors is NPhard, using the following trivial reduction from the standard 3Color problem.
Let G be an arbitrary undirected graph. I claim that G has a proper 3 -coloring if and only if G has a weak bicoloring with 3 colors.
\Rightarrow Suppose G has a proper coloring using the colors red, green, and blue. We can obtain a weak bicoloring of G using only the colors cyan, magenta, and yellow by recoloring each red vertex with \{magenta, yellow\}, recoloring each blue vertex with \{magenta, cyan\}, and recoloring each green vertex with \{yellow, cyan\}.
\Leftarrow Suppose G has a weak bicoloring using the colors cyan, magenta, yellow. Then we can obtain a proper 3 -coloring of G by defining red $=\{$ magenta, yellow $\}$, defining blue $=\{$ magenta, cyan $\}$, and defining green $=\{$ yellow, cyan $\}$.
More generally, for any integer k and any graph G, every weak k-bicoloring of G is also a proper $\binom{k}{2}$-coloring of G, and vice versa.
2.B. Prove that finding the minimum number of colors in a strong bicoloring of a given graph is NP-hard.

Solution:

It suffices to prove that deciding whether a graph has a strong bicoloring with five colors is NP-hard, using the following reduction from the standard 3Color problem.
Let $G=(V, E)$ be an arbitrary undirected graph. We build a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows:

- Initialize $V^{\prime}=V$. Add a new vertex s to V^{\prime}.
- Initialize $E^{\prime}=\emptyset$. For each $v \in V$, add edge $s v$ to E^{\prime}.
- For each $u v \in E$, add two new vertices $x_{u v}$ and $y_{u v}$ to V^{\prime}, and add three edges $u x_{u v}, x_{u v} y_{u v}$, and $y_{u v} v$ to E^{\prime}.
I claim that G has a proper 3 -coloring if and only if G^{\prime} has a strong bicoloring with five colors.
\Rightarrow Suppose G has a proper 3 -coloring with colors red, green, and blue. Then we define a strong bicoloring of G^{\prime} with colors $1,2,3,4,5$ as follows:
- Let $\operatorname{color}(s)=\{4,5\}$.
- For each red $v \in V$, let $\operatorname{color}(v)=\{1,2\}$.
- For each green $v \in V$, let $\operatorname{color}(v)=\{2,3\}$.
- For each blue $v \in V$, let $\operatorname{color}(v)=\{1,3\}$.
- For every $u v \in E$, if u is red and v is green, let $\operatorname{color}\left(x_{u v}\right)=\{3,4\}$ and $\operatorname{color}\left(y_{u v}\right)=\{1,5\}$.
- For every $u v \in E$, if u is red and v is blue, let $\operatorname{color}\left(x_{u v}\right)=\{3,4\}$ and $\operatorname{color}\left(y_{u v}\right)=\{2,5\}$.
- For every $u v \in E$, if u is green and v is blue, let $\operatorname{color}\left(x_{u v}\right)=\{1,4\}$ and $\operatorname{color}\left(y_{u v}\right)=\{2,5\}$. It is easy to check that every pair of adjacent vertices of G^{\prime} has disjoint color sets.
\Leftarrow Suppose G^{\prime} has a strong bicoloring with five colors. Without loss of generality (by renumbering), suppose $\operatorname{color}(s)=\{4,5\}$. We define a 3 -coloring in G as follows: for each $v \in V$,
- If $\operatorname{color}(v)=\{1,2\}$, then color v red.
- If $\operatorname{color}(v)=\{2,3\}$, then color v green.
- If $\operatorname{color}(v)=\{1,3\}$, then color v blue.

These are the only possibilities, since $\operatorname{color}(v)$ is disjoint from $\operatorname{color}(s)=\{4,5\}$.
We now check that this 3 -coloring is proper. Consider an edge $u v \in E$. For the sake of contradiction, suppose u and v have the same color in G. Then $\operatorname{color}(u)=\operatorname{color}(v)$ in G^{\prime}. But since $u x_{u v}, y_{u v} v \in E^{\prime}$, we have $\operatorname{color}\left(x_{u v}\right)$ and $\operatorname{color}\left(y_{u v}\right)$ contained in a set $\{1,2,3,4,5\}$ $\operatorname{color}(u)$ with 3 elements. But since $x_{u v} y_{u v} \in E^{\prime}, \operatorname{color}\left(x_{u v}\right)$ and $\operatorname{color}\left(y_{u v}\right)$ are disjoint and together have 4 elements: a contradiction.

