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Prove that each of the following problems is NP-hard.

1 Prove that the following problem is NP-hard: Given an undirected graph G, �nd any integer k > 374 such
that G has a proper coloring with k colors but G does not have a proper coloring with k − 374 colors.

Solution:

Let G′ be the union of 374 copies of G, with additional edges between every vertex of each copy and

every vertex in every other copy. Given G, we can easily build G′ in polynomial time by brute force.

Let χ(G) and χ(G′) denote the minimum number of colors in any proper coloring of G, and de�ne χ(G′)
similarly.

=⇒ Fix any coloring of G with χ(G) colors. We can obtain a proper coloring of G′ with 374 · χ(G)
colors, by using a distinct set of χ(G) colors in each copy of G. Thus, χ(G′) ≤ 374 · χ(G).

⇐= Now �x any coloring of G′ with χ(G′) colors. Each copy of G in G′ must use its own distinct set

of colors, so at least one copy of G uses at most ⌊χ(G′)/374⌋ colors. Thus, χ(G) ≤ ⌊χ(G′)/374⌋.

These two observations immediately imply that χ(G′) = 374 · χ(G). It follows that if k is an integer

such that k − 374 < χ(G′) ≤ k, then χ(G) = χ(G′)/374 = ⌈k/374⌉. Thus, if we could compute such

an integer k in polynomial time, we could compute χ(G) in polynomial time. But computing χ(G) is
NP-hard!

2 A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two types of

bicoloring: In a weak bicoloring, the endpoints of each edge must use di�erent sets of colors; however,

these two sets may share one color. In a strong bicoloring, the endpoints of each edge must use distinct sets

of colors; that is, they must use four colors altogether. Every strong bicoloring is also a weak bicoloring.

2.A. Prove that �nding the minimum number of colors in a weak bicoloring of a given graph is NP-hard.

Solution:

It su�ces to prove that deciding whether a graph has a weak bicoloring with three colors is NP-

hard, using the following trivial reduction from the standard 3Color problem.

Let G be an arbitrary undirected graph. I claim that G has a proper 3-coloring if and only if G
has a weak bicoloring with 3 colors.

⇒ Suppose G has a proper coloring using the colors red, green, and blue. We can obtain a weak

bicoloring of G using only the colors cyan, magenta, and yellow by recoloring each red vertex

with {magenta, yellow}, recoloring each blue vertex with {magenta, cyan}, and recoloring each

green vertex with {yellow, cyan}.
⇐ Suppose G has a weak bicoloring using the colors cyan, magenta, yellow. Then we can obtain a

proper 3-coloring of G by de�ning red = {magenta, yellow}, de�ning blue = {magenta, cyan},
and de�ning green = {yellow, cyan}.

More generally, for any integer k and any graph G, every weak k-bicoloring of G is also a proper(
k
2

)
-coloring of G, and vice versa.

2.B. Prove that �nding the minimum number of colors in a strong bicoloring of a given graph is NP-hard.
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Solution:

It su�ces to prove that deciding whether a graph has a strong bicoloring with �ve colors is NP-hard,

using the following reduction from the standard 3Color problem.

Let G = (V,E) be an arbitrary undirected graph. We build a new graph G′ = (V ′, E′) as follows:

� Initialize V ′ = V . Add a new vertex s to V ′.

� Initialize E′ = ∅. For each v ∈ V , add edge sv to E′.

� For each uv ∈ E, add two new vertices xuv and yuv to V ′, and add three edges uxuv, xuvyuv,
and yuvv to E′.

I claim that G has a proper 3-coloring if and only if G′ has a strong bicoloring with �ve colors.

⇒ Suppose G has a proper 3-coloring with colors red, green, and blue. Then we de�ne a strong

bicoloring of G′ with colors 1, 2, 3, 4, 5 as follows:

� Let color(s) = {4, 5}.
� For each red v ∈ V , let color(v) = {1, 2}.
� For each green v ∈ V , let color(v) = {2, 3}.
� For each blue v ∈ V , let color(v) = {1, 3}.
� For every uv ∈ E, if u is red and v is green, let color(xuv) = {3, 4} and color(yuv) = {1, 5}.
� For every uv ∈ E, if u is red and v is blue, let color(xuv) = {3, 4} and color(yuv) = {2, 5}.
� For every uv ∈ E, if u is green and v is blue, let color(xuv) = {1, 4} and color(yuv) = {2, 5}.
It is easy to check that every pair of adjacent vertices of G′ has disjoint color sets.

⇐ Suppose G′ has a strong bicoloring with �ve colors. Without loss of generality (by re-

numbering), suppose color(s) = {4, 5}. We de�ne a 3-coloring in G as follows: for each

v ∈ V ,

� If color(v) = {1, 2}, then color v red.

� If color(v) = {2, 3}, then color v green.

� If color(v) = {1, 3}, then color v blue.

These are the only possibilities, since color(v) is disjoint from color(s) = {4, 5}.
We now check that this 3-coloring is proper. Consider an edge uv ∈ E. For the sake of

contradiction, suppose u and v have the same color in G. Then color(u) = color(v) in G′.
But since uxuv, yuvv ∈ E′, we have color(xuv) and color(yuv) contained in a set {1, 2, 3, 4, 5}−
color(u) with 3 elements. But since xuvyuv ∈ E′, color(xuv) and color(yuv) are disjoint and

together have 4 elements: a contradiction.
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