
Solutions for Discussion 13b: Apr 19 (Fri) Version: 1.0 CS/ECE 374 A, Spring 2024

Prove that each of the following problems is NP-hard.

1 Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?

Solution:

We prove this problem is NP-hard by a reduction from the undirected Hamiltonian path problem. Given

an arbitrary graph G, let H be the graph obtained from G by adding 374 isolated vertices. Call a path

in H almost-Hamiltonian if it visits all but 374 vertices. I claim that G contains a Hamiltonian path

if and only if H contains an almost-Hamiltonian path.

⇒ Suppose G has a Hamiltonian path P . Then P is an almost-Hamiltonian path in H, because it

misses only the 374 isolated vertices.

⇐ Suppose H has an almost-Hamiltonian path P . This path must miss all 374 isolated vertices in

H, and therefore must visit every vertex in G. Every edge in H, and therefore every edge in P , is
also an edge in G. We conclude that P is a Hamiltonian path in G.

Given G, we can easily build H in polynomial time by brute force.

2 Given an undirected graph G, does G have a spanning tree with at most 374 leaves?

Solution:

We prove this problem is NP-hard by a reduction from the undirected Hamiltonian path problem.1

Given an arbitrary graph G, let H be the graph obtained from G by adding the following vertices and

edges:

� First we add a vertex z with edges to every other vertex in G.

� Then we add 373 vertices ℓ1, . . . , ℓ373, each with edges to z and nothing else.

Call a spanning tree of H almost-Hamiltonian if it has at most 374 leaves. I claim that G contains

a Hamiltonian path if and only if H contains an almost-Hamiltonian spanning tree.

⇒ Suppose G has a Hamiltonian path P . Suppose P starts at vertex s and ends at vertex t. Let T
be subgraph of H obtained by adding the edge tz and all possible edges zℓi. Then T is a spanning

tree of H with exactly 374 leaves, namely s and all 373 new vertices ℓi.

⇐ Suppose H has an almost-Hamiltonian spanning tree T . Every node ℓi is a leaf of T , so T must

consist of the 373 edges zℓi and a simple path from z to some vertex s of G. Let t be the only

neighbor of z in T that is not a leaf ℓi, and let P be the unique path in T from s to t. This path
visits every vertex of G; in other words, P is a Hamiltonian path in G.

Given G, we can easily build H in polynomial time by brute force.

3 Recall that a 5-coloring of a graph G is a function that assigns each vertex of G a �color� from the set

{0, 1, 2, 3, 4}, such that for any edge uv, vertices u and v are assigned di�erent �colors�. A 5-coloring is

careful if the colors assigned to adjacent vertices are not only distinct, but di�er by more than 1 (mod 5).
Prove that deciding whether a given graph has a careful 5-coloring is NP-hard.
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Solution:

We prove that careful 5-coloring is NP-hard by reduction from the standard 5Color problem.

Given a graph G, we construct a new graph H by replacing each edge in G with a path of length three.

I claim that H has a careful 5-coloring if and only if G has a (not necessarily careful) 5-coloring.

⇐= Suppose G has a 5-coloring. Consider a single edge uv in G, and suppose color(u) = a and

color(v) = b. We color the path from u to v in H as follows:

� If b = (a+ 1) mod 5, use colors (a, (a+ 2) mod 5, (a− 1) (mod 5), b).

� If b = (a− 1) mod 5, use colors (a, (a− 2) mod 5, (a+ 1) (mod 5), b).

� Otherwise, use colors (a, b, a, b).

In particular, every vertex in G retains its color in H. The resulting 5-coloring of H is careful.

=⇒ On the other hand, supposeH has a careful 5-coloring. Consider a path (u, x, y, v) inH correspond-

ing to an arbitrary edge uv inG. Without loss of generality, say color(u) = 0; there are exactly eight
careful colorings of this path with color(u) = 0, namely: (0, 2, 0, 2), (0, 2, 0, 3), (0, 2, 4, 1), (0, 2, 4, 2),
(0, 3, 0, 3), (0, 3, 0, 2), (0, 3, 1, 3), (0, 3, 1, 4). It follows immediately that color(u) ̸= color(v). Thus,
if we color each vertex of G with its color in H, we obtain a valid 5-coloring of G.

Given G, we can clearly construct H in polynomial time.
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