Describe recursive backtracking algorithms for the following problems. *Don’t worry about running times.*

1. **Given an array** $A[1..n]$ **of integers, compute the length of a *longest increasing subsequence***.

Solution:

[#1 of ∞] Add a sentinel value $A[0] = -\infty$. Let $LIS(i, j)$ denote the length of the longest increasing subsequence of $A[j..n]$ where every element is larger than $A[i]$. This function obeys the following recurrence:

$$LIS(i, j) = \begin{cases} 0 & \text{if } j > n \\ LIS(i, j + 1) & \text{if } j \leq n \text{ and } A[i] \geq A[j] \\ \max \{LIS(i, j + 1), 1 + LIS(j, j + 1)\} & \text{otherwise} \end{cases}$$

We need to compute $LIS(0, 1)$.

Solution:

[#2 of ∞] Add a sentinel value $A[n + 1] = -\infty$. Let $LIS(i, j)$ denote the length of the longest increasing subsequence of $A[1..j]$ where every element is smaller than $A[j]$. This function obeys the following recurrence:

$$LIS(i, j) = \begin{cases} 0 & \text{if } i < 1 \\ LIS(i - 1, j) & \text{if } i \geq 1 \text{ and } A[i] \geq A[j] \\ \max \{LIS(i - 1, j), 1 + LIS(i - 1, i)\} & \text{otherwise} \end{cases}$$

We need to compute $LIS(n, n + 1)$.

Solution:

[#3 of ∞] Let $LIS(i)$ denote the length of the longest increasing subsequence of $A[i..n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$LIS(i) = \begin{cases} 1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\ 1 + \max \{LIS(j) \mid j > i \text{ and } A[j] > A[i]\} & \text{otherwise} \end{cases}$$

(The first case is actually redundant if we define $\max \emptyset = 0$.) We need to compute $\max_i LIS(i)$.

Solution:

[#4 of ∞] Add a sentinel value $A[0] = -\infty$. Let $LIS(i)$ denote the length of the longest increasing subsequence of $A[i..n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$LIS(i) = \begin{cases} 1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\ 1 + \max \{LIS(j) \mid j > i \text{ and } A[j] > A[i]\} & \text{otherwise} \end{cases}$$

(The first case is actually redundant if we define $\max \emptyset = 0$.) We need to compute $LIS(0) - 1$; the -1 removes the sentinel $-\infty$ from the start of the subsequence.
Solution:

[#5 of ∞] Add sentinel values \(A[0] = -\infty \) and \(A[n+1] = \infty \). Let \(LIS(j) \) denote the length of the longest increasing subsequence of \(A[1..j] \) that ends with \(A[j] \). This function obeys the following recurrence:

\[
LIS(j) = \begin{cases}
1 & \text{if } j = 0 \\
1 + \max \{ LIS(i) \mid i < j \text{ and } A[i] < A[j] \} & \text{otherwise}
\end{cases}
\]

We need to compute \(LIS(n+1) - 2 \); the \(-2\) removes the sentinels \(-\infty\) and \(\infty\) from the subsequence.

Given an array \(A[1..n] \) of integers, compute the length of a **longest decreasing subsequence**.

Solution:

[one of many] Add a sentinel value \(A[0] = \infty \). Let \(LDS(i, j) \) denote the length of the longest decreasing subsequence of \(A[j..n] \) where every element is smaller than \(A[i] \). This function obeys the following recurrence:

\[
LDS(i, j) = \begin{cases}
0 & \text{if } j > n \\
LDS(i, j+1) & \text{if } j \leq n \text{ and } A[i] \leq A[j] \\
\max \{ LDS(i, j+1), 1 + LDS(j, j+1) \} & \text{otherwise}
\end{cases}
\]

We need to compute \(LDS(0, 1) \).

Solution:

[clever] Multiply every element of \(A \) by \(-1\), and then compute the length of the longest increasing subsequence using the algorithm from problem 1.

Given an array \(A[1..n] \) of integers, compute the length of a **longest alternating subsequence**.

Solution:

[one of many] We define two functions:

- Let \(LAS^+(i, j) \) denote the length of the longest alternating subsequence of \(A[j..n] \) whose first element (if any) is larger than \(A[i] \) and whose second element (if any) is smaller than its first.
- Let \(LAS^-(i, j) \) denote the length of the longest alternating subsequence of \(A[j..n] \) whose first element (if any) is smaller than \(A[i] \) and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

\[
LAS^+(i, j) = \begin{cases}
0 & \text{if } j > n \\
LAS^+(i, j+1) & \text{if } j \leq n \text{ and } A[j] \leq A[i] \\
\max \{ LAS^+(i, j+1), 1 + LAS^-(j, j+1) \} & \text{otherwise}
\end{cases}
\]

\[
LAS^-(i, j) = \begin{cases}
0 & \text{if } j > n \\
LAS^-(i, j+1) & \text{if } j \leq n \text{ and } A[j] \geq A[i] \\
\max \{ LAS^-(i, j+1), 1 + LAS^+(j, j+1) \} & \text{otherwise}
\end{cases}
\]
To simplify computation, we consider two different sentinel values $A[0]$. First we set $A[0] = -\infty$ and let $\ell^+ = LAS^+(0, 1)$. Then we set $A[0] = +\infty$ and let $\ell^- = LAS^-(0, 1)$. Finally, the length of the longest alternating subsequence of A is $\max\{\ell^+, \ell^-, \ell^-, \ell^+\}$.

Solution:

We define two functions:

- Let $LAS^+(i)$ denote the length of the longest alternating subsequence of $A[i..n]$ that starts with $A[i]$ and whose second element (if any) is larger than $A[i]$.
- Let $LAS^-(i)$ denote the length of the longest alternating subsequence of $A[i..n]$ that starts with $A[i]$ and whose second element (if any) is smaller than $A[i]$.

These two functions satisfy the following mutual recurrences:

$$LAS^+(i) = \begin{cases} 1 & \text{if } A[j] \leq A[i] \text{ for all } j > i \\ 1 + \max \{LAS^-(j) \mid j > i \text{ and } A[j] > A[i]\} & \text{otherwise} \end{cases}$$

$$LAS^-(i) = \begin{cases} 1 & \text{if } A[j] \geq A[i] \text{ for all } j > i \\ 1 + \max \{LAS^+(j) \mid j > i \text{ and } A[j] < A[i]\} & \text{otherwise} \end{cases}$$

We need to compute $\max_i \max \{LAS^+(i), LAS^-(i)\}$.

To think about later:

1. Given an array $A[1..n]$ of integers, compute the length of a longest convex subsequence of A.

Solution:

Let $LCS(i, j)$ denote the length of the longest convex subsequence of $A[i..n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$LCS(i, j) = 1 + \max \{LCS(j, k) \mid j < k \leq n \text{ and } A[i] + A[k] > 2A[j]\}$$

Here we define $\max \emptyset = 0$; this gives us a working base case. The length of the longest convex subsequence is $\max_{1 \leq i < j \leq n} LCS(i, j)$.

Solution:

[with sentinels] Assume without loss of generality that $A[i] \geq 0$ for all i. (Otherwise, we can add $|m|$ to each $A[i]$, where m is the smallest element of $A[1..n]$.) Add two sentinel values $A[0] = 2M + 1$ and $A[-1] = 4M + 3$, where M is the largest element of $A[1..n]$.

Let $LCS(i, j)$ denote the length of the longest convex subsequence of $A[i..n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$LCS(i, j) = 1 + \max \{LCS(j, k) \mid j < k \leq n \text{ and } A[i] + A[k] > 2A[j]\}$$

Here we define $\max \emptyset = 0$; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of $A[1..n]$ is $LCS(-1, 0) - 2$.

3
Given an array \(A[1..n]\), compute the length of a longest \textit{palindrome} subsequence of \(A\).

\section*{Solution:}

[naive] Let \(LPS(i, j)\) denote the length of the longest palindrome subsequence of \(A[i..j]\). This function obeys the following recurrence:

\[
LPS(i, j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
\max \left\{ \begin{array}{l} \text{LPS}(i + 1, j) \\ \text{LPS}(i, j - 1) \end{array} \right\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
\max \left\{ \begin{array}{l} 2 + \text{LPS}(i + 1, j - 1) \\ \text{LPS}(i + 1, j) \\ \text{LPS}(i, j - 1) \end{array} \right\} & \text{otherwise}
\end{cases}
\]

We need to compute \(LPS(1, n)\).

\section*{Solution:}

[with greedy optimization] Let \(LPS(i, j)\) denote the length of the longest palindrome subsequence of \(A[i..j]\). Before stating a recurrence for this function, we make the following useful observation.

\textbf{Claim 0.1.} If \(i < j\) and \(A[i] = A[j]\), then \(LPS(i, j) = 2 + LPS(i + 1, j - 1)\).

\textbf{Proof:} Suppose \(i < j\) and \(A[i] = A[j]\). Fix an arbitrary longest palindrome subsequence \(S\) of \(A[i..j]\). There are four cases to consider.

- If \(S\) uses neither \(A[i]\) nor \(A[j]\), then \(A[i] \cdot S \cdot A[j]\) is a palindrome subsequence of \(A[i..j]\) that is longer than \(S\), which is impossible.
- Suppose \(S\) uses \(A[i]\) but not \(A[j]\). Let \(A[k]\) be the last element of \(S\). If \(k = i\), then \(A[i] \cdot A[j]\) is a palindrome subsequence of \(A[i..j]\) that is longer than \(S\), which is impossible. Otherwise, replacing \(A[k]\) with \(A[j]\) gives us a palindrome subsequence of \(A[i..j]\) with the same length as \(S\) that uses both \(A[i]\) and \(A[j]\).
- Suppose \(S\) uses \(A[j]\) but not \(A[i]\). Let \(A[h]\) be the first element of \(S\). If \(h = j\), then \(A[i] \cdot A[j]\) is a palindrome subsequence of \(A[i..j]\) that is longer than \(S\), which is impossible. Otherwise, replacing \(A[h]\) with \(A[i]\) gives us a palindrome subsequence of \(A[i..j]\) with the same length as \(S\) that uses both \(A[i]\) and \(A[j]\).
- Finally, \(S\) might include both \(A[i]\) and \(A[j]\).
In all cases, we find either a contradiction or a longest palindrome subsequence of $A[i..j]$ that uses both $A[i]$ and $A[j]$.

Claim 1 implies that the function LPS satisfies the following recurrence:

$$LPS(i, j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
\max\{LPS(i + 1, j), LPS(i, j - 1)\} & \text{if } i < j \text{ and } A[i] \neq A[j] \\
2 + LPS(i + 1, j - 1) & \text{otherwise}
\end{cases}$$

We need to compute $LPS(1, n)$.