In the lecture, we have described an algorithm of Karatsuba that multiplies two \(n \)-digit integers using \(O(n^{\log_2 3}) \) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an \(n \)-digit number and an \(m \)-digit number, where \(m < n \), in \(O(m^{\log_2 3} - 1)n \) time.

Solution:

Split the larger number into \(\lceil n/m \rceil \) chunks, each with \(m \) digits. Multiply the smaller number by each chunk in \(O(m^{\log_2 3}) \) time using Karatsuba’s algorithm, and then add the resulting partial products with appropriate shifts.

\[
\text{SkewMultiply}(x[0 \ldots m-1], y[0 \ldots n-1]):
\]

\[
\begin{aligned}
\text{prod} &\leftarrow 0 \\
\text{offset} &\leftarrow 0 \\
\text{for } i &\leftarrow 0 \text { to } \lceil n/m \rceil - 1 \\
\text{chunk} &\leftarrow y[i \cdot m \ldots (i+1) \cdot m-1] \\
\text{prod} &\leftarrow \text{prod} \cdot 10^m + \text{Multiply}(x, \text{chunk})
\end{aligned}
\]

Each call to \(\text{Multiply} \) requires \(O(m^{\log_2 3}) \) time, and all other work within a single iteration of the main loop requires \(O(m) \) time. Thus, the overall running time of the algorithm is \(O(1) + \lceil n/m \rceil O(m^{\log_2 3}) = O(m^{\log_2 3} - 1)n \) as required.

This is the standard method for multiplying a large integer by a single “digit” integer written in base \(10^m \), but with each single-digit multiplication implemented using Karatsuba’s algorithm.

2. Describe an algorithm to compute the decimal representation of \(2^n \) in \(O(n^{\log_2 3}) \) time. (The standard algorithm that computes one digit at a time requires \(\Theta(n^2) \) time.)

Solution:

We compute \(2^n \) via repeated squaring, implementing the following recurrence:

\[
2^n = \begin{cases}
1 & \text{if } n = 0 \\
(2^{n/2})^2 & \text{if } n > 0 \text{ is even} \\
2 \cdot (2^{n/2})^2 & \text{if } n \text{ is odd}
\end{cases}
\]

We use Karatsuba’s algorithm to implement decimal multiplication for each square.
Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(n^{\lg 3})$ time. (Hint: Let $x = a \cdot 2^{n/2} + b$. Watch out for an extra log factor in the running time.)

Solution:

Following the hint, we break the input x into two smaller numbers $x = a \cdot 2^{n/2} + b$; recursively convert a and b into decimal; convert $2^{n/2}$ into decimal using the solution to problem 2; multiply a and $2^{n/2}$ using Karatsuba’s algorithm; and finally add the product to b to get the final result.

```plaintext
Decimal(x[0..n-1]):
    if n < 100
        use brute force
    else
        m ← ⌈n/2⌉
        a ← x[m..n-1]
        b ← x[0..m-1]
    return Add(Multiply(Decimal(a), TwoToThe(m)), Decimal(b))
```

The running time of this algorithm satisfies the recurrence $T(n) = 2T(n/2) + O(n^{\lg 3})$; the $O(n^{\lg 3})$ term includes the running times of both `Multiply` and `TwoToThe` (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with 2^i nodes at recursion depth i. Each recursive call at depth i converts an $n/2^i$-bit binary number to decimal; the non-recursive work at the corresponding node of the recursion tree is $O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i)$. Thus, the total work at depth i is $2^i \cdot O(n^{\lg 3}/3^i) = O(n^{\lg 3}/(3/2)^i)$. The level sums define a descending geometric series, which is dominated by its largest term $O(n^{\lg 3})$.

Notice that if we had converted $2^{n/2}$ to decimal recursively instead of calling `TwoToThe`, the recurrence would have been $T(n) = 3T(n/2) + O(n^{\lg 3})$. Every level of this recursion tree has the same sum, so the overall running time would be $O(n^{\lg 3} \log n)$.

Think about later:

4 Suppose we can multiply two n-digit numbers in $O(M(n))$ time. Describe an algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(M(n) \log n)$ time.

Solution:

We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba’s algorithm. Let $T_2(n)$ and $T_3(n)$ denote the running times of `TwoToThe` and `Decimal`, respectively. We need to solve the recurrences

$$T_2(n) = T_2(n/2) + O(M(n)) \quad \text{and} \quad T_3(n) = 2T_3(n/2) + T_2(n) + O(M(n)).$$

But how can we do that when we don’t know $M(n)$?
For the moment, suppose $M(n) = O(n^c)$ for some constant $c > 0$. Since any algorithm to multiply two n-digit numbers must read all n digits, we have $M(n) = \Omega(n)$, and therefore $c \geq 1$. On the other hand, the grade-school lattice algorithm implies $M(n) = O(n^2)$, so we can safely assume $c \leq 2$. With this assumption, the recursion tree method implies

\[
T_2(n) = T_2(n/2) + O(n^c) \quad \implies T_2(n) = O(n^c)
\]

\[
T_3(n) = 2T_3(n/2) + O(n^c) \quad \implies T_3(n) = \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}
\]

So in this case, we have $T_3(n) = O(M(n) \log n)$ as required.

In reality, $M(n)$ may not be a simple polynomial, but we can effectively ignore any sub-polynomial noise using the following trick. Suppose we can write $M(n) = n^c \cdot \mu(n)$ for some constant c and some arbitrary non-decreasing function $\mu(n)$.

To solve the recurrence $T_2(n) = T_2(n/2) + O(M(n))$, we define a new function $\tilde{T}_2(n) = T_2(n)/\mu(n)$. Then we have

\[
\tilde{T}_2(n) = \frac{T_2(n/2)}{\mu(n)} + \frac{O(M(n))}{\mu(n)} \leq \frac{T_2(n/2)}{\mu(n/2)} + \frac{O(M(n))}{\mu(n)} = \tilde{T}_2(n/2) + O(n^c).
\]

Here we used the inequality $\mu(n) \geq \mu(n/2)$; this the only fact about μ that we actually need. The recursion tree method implies $\tilde{T}_2(n) \leq O(n^c)$, and therefore $T_2(n) \leq O(n^c) \cdot \mu(n) = O(M(n))$.

Similarly, to solve the recurrence $T_3(n) = 2T_3(n/2) + O(M(n))$, we define $\tilde{T}_3(n) = T_3(n)/\mu(n)$, which gives us the recurrence $\tilde{T}_3(n) \leq 2\tilde{T}_3(n/2) + O(n^c)$. The recursion tree method implies

\[
\tilde{T}_3(n) \leq \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}
\]

In both cases, we have $\tilde{T}_3(n) = O(n^c \log n)$, which implies that $T_3(n) = O(M(n) \log n)$.
