Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster.

1 Suppose we are given an array $A[1 . . n]$ of n distinct integers, which could be positive, negative, or zero, sorted in increasing order so that $A[1]<A[2]<\cdots<A[n]$.
1.A. Describe a fast algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists.

Solution:

Suppose we define a second array $B[1 . . n]$ by setting $B[i]=A[i]-i$ for all i. For every index i we have

$$
B[i]=A[i]-i \leq(A[i+1]-1)-i=A[i+1]-(i+1)=B[i+1]
$$

so this new array is sorted in increasing order. Clearly, $A[i]=i$ if and only if $B[i]=0$. So we can find an index i such that $A[i]=i$ by performing a binary search in B. We don't actually need to compute B in advance; instead, whenever the binary search needs to access some value $B[i]$, we can just compute $A[i]-i$ on the fly instead!
Here are two formulations of the resulting algorithm, first recursive (keeping the array A as a global variable), and second iterative.

```
// Return any index \(i\) such that \(\ell \leq i \leq r\) and \(A[i]=i\)
FindMatch \((\ell, r)\) :
    if \(\ell>r\)
        return None
    \(\operatorname{mid} \leftarrow(\ell+r) / 2\)
    if \(A[\) mid \(]=\) mid \(\quad / / B[\) mid \(]=0\)
        return mid
    else if \(A[\) mid \(]<\) mid \(\quad / / B[m i d]<0\)
        return FindMatch \((\) mid \(+1, r)\)
    else \(\quad / / B[m i d]>0\)
        return FindMatch \((\ell\), mid - 1)
```

```
FindMatch \((A[1 . . n]):\)
    \(h i \leftarrow n\)
    \(l o \leftarrow 1\)
    while \(l o \leq h i\)
        \(m i d \leftarrow(l o+h i) / 2\)
        if \(A[\) mid \(]=\) mid \(\quad / / B[\) mid \(]=0\)
            return mid
        else if \(A[m i d]<m i d \quad / / B[m i d]<0\)
            \(l o \leftarrow m i d+1\)
        else \(\quad / / B[m i d]>0\)
            \(h i \leftarrow \operatorname{mid}-1\)
    return None
```

In both formulations, the algorithm is binary search, so it runs in $O(\log n)$ time.
1.B. Suppose we know in advance that $A[1]>0$. Describe an even faster algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists. (Hint: This is really easy.)

Solution:

The following algorithm solves this problem in $O(1)$ time:

```
FindMatchPos(A[1..n]):
    if \(A[1]=1\)
        return 1
    else
        return None
```

Again, the array $B[1 . . n]$ defined by setting $B[i]=A[i]-i$ is sorted in increasing order. It follows that if $A[1]>1$ (that is, $B[1]>0$), then $A[i]>i$ (that is, $B[i]>0$) for every index i. $A[1]$ cannot be less than 1 .

2 Suppose we are given an array $A[1 . . n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are exactly six local minima in the following array:

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 9 , because $A[9]$ is a local minimum. (Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?)

Solution:

The following algorithm solves this problem in $O(\log n)$ time:

```
\(\underline{\operatorname{LocalMin}(A[1 \ldots n]):}\)
    if \(n<100\)
        find the smallest element in \(A\) by brute force
    \(m \leftarrow\lfloor n / 2\rfloor\)
    if \(A[m]<A[m+1]\)
        return \(\operatorname{LocalMin}(A[1 \ldots m+1])\)
    else
        return \(\operatorname{LocalMin}(A[m \ldots n])\)
```

If n is less than 100, then a brute-force search runs in $O(1)$ time. There's nothing special about 100 here; any other constant will do.
Otherwise, if $A[n / 2]<A[n / 2+1]$, the subarray $A[1 \ldots n / 2+1]$ satisfies the precise boundary conditions of the original problem, so the recursion fairy will find local minimum inside that subarray.
Finally, if $A[n / 2]>A[n / 2+1]$, the subarray $A[n / 2 \ldots n]$ satisfies the precise boundary conditions of the original problem, so the recursion fairy will find local minimum inside that subarray.
The running time satisfies the recurrence $T(n) \leq T(\lceil n / 2\rceil+1)+O(1)$. Except for the +1 and the ceiling in the recursive argument, which we can ignore, this is the binary search recurrence, whose solution is $T(n)=O(\log n)$.

Alternatively, we can observe that $\lceil n / 2\rceil+1<2 n / 3$ when $n \geq 100$, and therefore $T(n) \leq T(2 n / 3)+O(1)$, which implies $T(n)=O\left(\log _{3 / 2} n\right)=O(\log n)$.

3 Suppose you are given two sorted arrays $A[1 . . n]$ and $B[1 . . n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$. For example, given the input

$$
A[1 . .8]=[0,1,6,9,12,13,18,20] \quad B[1 . .8]=[2,4,5,8,17,19,21,23]
$$

your algorithm should return the integer 9 . (Hint: What can you learn by comparing one element of A with one element of B ?)

Solution:

The following algorithm solves this problem in $O(\log n)$ time:

```
\(\underline{\operatorname{Median}(A[1 \ldots n], B[1 \ldots n]):}\)
if \(n<10^{100}\)
    use brute force
else if \(A[n / 2]>B[n / 2]\)
    return \(\operatorname{Median}(A[1 \ldots n / 2], B[n / 2+1 \ldots n])\)
else
    return \(\operatorname{Median}(A[n / 2+1 \ldots n], B[1 \ldots n / 2])\)
```

Suppose $A[n / 2]>B[n / 2]$. Then $A[n / 2+1]$ is larger than all n elements in $A[1 \ldots n / 2] \cup B[1 \ldots n / 2]$, and therefore larger than the median of $A \cup B$, so we can discard the upper half of A. Similarly, $B[n / 2-1]$ is smaller than all $n+1$ elements of $A[n / 2 \ldots n] \cup B[n / 2+1 \ldots n]$, and therefore smaller than the median of $A \cup B$, so we can discard the lower half of B. Because we discard the same number of elements from each array, the median of the remaining subarrays is the median of the original $A \cup B$.

To think about later:

4 Now suppose you are given two sorted arrays $A[1 \ldots m]$ and $B[1 \ldots n]$ and an integer k. Describe a fast algorithm to find the k th smallest element in the union $A \cup B$. For example, given the input

$$
A[1 \ldots 8]=[0,1,6,9,12,13,18,20] \quad B[1 \ldots 5]=[2,5,7,17,19] \quad k=6
$$

your algorithm should return the integer 7 .

Solution:

The following algorithm solves this problem in $O(\log \min \{k, m+n-k\})=O(\log (m+n))$ time:

```
\(\operatorname{Select}(A[1 \ldots m], B[1 \ldots n], k):\)
if \(k<(m+n) / 2\)
    return \(\operatorname{Median}(A[1 \ldots k], B[1 \ldots k])\)
else
    return \(\operatorname{Median}(A[k-n \ldots m], B[k-m \ldots n])\)
```

Here, Median is the algorithm from problem 3 with one minor tweak. If Median wants an entry in either A or B that is outside the bounds of the original arrays, it uses the value $-\infty$ if the index is too low, or ∞ if the index is too high, instead of creating a core dump.

