Design Turing machines $M = (Q, \Sigma, \Gamma, \delta, \text{start}, \text{accept}, \text{reject})$ for each of the following tasks, either by listing the states Q, the tape alphabet Γ, and the transition function δ (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet $\Sigma = \{1, \#\}$; the tape alphabet Γ can be any superset of $\{1, \#, \square, \triangleright\}$ where \square is the blank symbol and \triangleright is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

The solutions below describe single-tape, single-head Turing machines. There are arguably simpler Turing machines that use multiple tapes and/or multiple heads.

1 On input 1^n, for any non-negative integer n, write $1^n#1^n$ on the tape and accept.

Solution:

Our Turing machine M_1 uses the tape alphabet $\Gamma = \{0, 1, \#, \square, \triangleright\}$ and the following states, in addition to accept and reject:

- **start** – Initialize the tape by replacing every 1 with 0. When we find a blank, write # and start scanning left.
- **scanL** – Scan left for the rightmost 0. If we find it, replace it with 1 and start scanning right. If we find \triangleright instead, we are done; halt and accept.
- **scanR** – Scan right for the leftmost blank. When we find it, write 1 and start scanning left again.

Here is the transition graph of the machine. To simplify the drawing, we omit all transitions into the hidden reject state.

![Transition Graph](image)

Here is the transition function; again, all unspecified transitions lead to the reject state.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(\text{start}, 1)$</td>
<td>$(\text{start}, 0, +1)$; init phase: replace 1s with 0s</td>
</tr>
<tr>
<td>$\delta(\text{start}, \square)$</td>
<td>$(\text{scanL}, #, -1)$; finished init phase; write # and start scanning left</td>
</tr>
<tr>
<td>$\delta(\text{scanL}, 1)$</td>
<td>$(\text{scanL}, 1, -1)$; scan left to rightmost 0</td>
</tr>
<tr>
<td>$\delta(\text{scanL}, #)$</td>
<td>$(\text{scanL}, #, -1)$; found it; write 1 and start scanning right</td>
</tr>
<tr>
<td>$\delta(\text{scanL}, \triangleright)$</td>
<td>$(\text{accept}, \triangleright, +1)$; found start of tape instead; we are done!</td>
</tr>
<tr>
<td>$\delta(\text{scanR}, 1)$</td>
<td>$(\text{scanR}, 1, +1)$; main loop: scan right to leftmost \square</td>
</tr>
<tr>
<td>$\delta(\text{scanR}, #)$</td>
<td>$(\text{scanR}, #, +1)$; found it; write 1 and start scanning left</td>
</tr>
<tr>
<td>$\delta(\text{scanR}, \square)$</td>
<td>$(\text{scanL}, 1, -1)$</td>
</tr>
</tbody>
</table>
On input \(\#^n 1^m\), for any non-negative integers \(m\) and \(n\), write \(1^m\) on the tape and accept. In other words, delete all the \#s, thereby shifting the 1s to the start of the tape.

Solution:

Our machine \(M_2\) repeatedly scans for the last \# and replaces it with 1, then scans for the rightmost 1 and replaces it with a blank, until the search for the last \# fails. We use the minimal tape alphabet \(\Gamma = \{1, \#, \#, \square, \triangleright\}\) and the following states, in addition to accept and reject:

- **\(\text{start}\)** – Scan right past all \#s
- **\(\text{scanL}\)** – Scan left to the rightmost \# or \(\triangleright\). If we find \#, replace it with 1; if we find \(\triangleright\), we are done!
- **\(\text{scanR}\)** – Scan right to the leftmost \(\square\) (just after the rightmost 1, if any).
- **\(\text{erase1}\)** – Replace the rightmost 1 with \(\square\)

Here is the transition graph of the machine. To simplify the drawing, we omit all transitions into the hidden reject state.

![Transition Graph]

On input \(\#^n 1^n\), for any non-negative integer \(n\), write \(\#1^{2n}\) on the tape and accept. (**Hint:** Modify the Turing machine from problem 1.)

Solution:

Our machine \(M_3\) mirrors \(M_1\) with a few minor changes. First, we won’t both writing a second \# between the first and second copies of the input string; second, we treat the initial \# as the de-facto beginning of the tape. Here are the states:

- **\(\text{start}\)** – Scan right for first blank, replacing 1s with 0s
- **\(\text{scanL}\)** – Scan left for rightmost 0, replace with 1
- **\(\text{scanR}\)** – Scan right for leftmost blank, replace with 1
- **\(\text{done}\)** – Found the initial \#; reset the head to the start position and accept

And here is the transition graph, as usual omitting transitions to reject.
On input 1^n, for any non-negative integer n, write 1^{2^n} on the tape and accept. (Hint: Use the three previous Turing machines as subroutines.)

Solution:

Our machine M_4 works in several phases:

- Write #1 at the end of the input string
- Repeatedly transform $1^a # b 1^c$ into $1^{a-1} # b+1 1^{2c}$ using a small modification of M_3 (which uses M_1 as a subroutine).
- When the initial string of 1s is empty, remove all #s using M_2.

So here are the states:

- **start**: Scan right for a blank, and write #
- **write1**: Write 1 after # and start main loop
- three states from M_3 to double the number 1s to the right of #s
- **scanL1**: scan left for rightmost 1 left of #s, replace with # and repeat main loop
- four states from M_2 to delete the #s
1/1,+1
start □/#,+1
0/1,+1
write1
□/1,−1

1/0,+1
dinit □/□,−1
dscanL 0/1,+1
dscanR □/1,−1

#/#,+1
mscanL 1/#,−1
#/#,−1

1/#,−1
accept ▷/▷,+1

1/1,+1
cerase1 □/□,−1

1/#,−1
cstart ▷/▷,+1

1/1,+1
cscanL ▷/▷,+1
cscanR

1/1,−1
clean up: delete #s