Design Turing machines $M=(Q, \Sigma, \Gamma, \delta$, start, accept, reject $)$ for each of the following tasks, either by listing the states Q, the tape alphabet Γ, and the transition function δ (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet $\Sigma=\{1, \#\}$; the tape alphabet Γ can be any superset of $\{1, \#, \square, \triangleright\}$ where \square is the blank symbol and \triangleright is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

1 On input 1^{n}, for any non-negative integer n, write $1^{n} \# 1^{n}$ on the tape and accept.

2 On input $\#^{n} 1^{m}$, for any non-negative integers m and n, write 1^{m} on the tape and accept. In other words, delete all the $\# \mathrm{~s}$ and shift the 1 s to the start of the tape.

3 On input $\# 1^{n}$, for any non-negative integer n, write $\# 1^{2 n}$ on the tape and accept. (Hint: Modify the Turing machine from problem 1.)

4 On input 1^{n}, for any non-negative integer n, write $1^{2^{n}}$ on the tape and accept. (Hint: Use the three previous Turing machines as subroutines.)

