Give context-free grammars for each of the following languages.
$1 \quad\left\{0^{2 n} 1^{n} \mid n \geq 0\right\}$
| Solution: $S \rightarrow \varepsilon \mid 00 S 1$.
$2\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}$
(Hint: If $m \neq 2 n$, then either $m<2 n$ or $m>2 n$.)

Solution:

To simplify notation, let $\Delta(w)=\#(0, w)-2 \#(1, w)$. Our solution follows the following logic. Let w be an arbitrary string in this language.

- Because $\Delta(w) \neq 0$, then either $\Delta(w)>0$ or $\Delta(w)<0$.
- If $\Delta(w)>0$, then $w=0^{i} z$ for some integer $i>0$ and some suffix z with $\Delta(z)=0$.
- If $\Delta(w)<0$, then $w=x 1^{j}$ for some integer $j>0$ and some prefix x with either $\Delta(x)=0$ or $\Delta(x)=1$.
- Substrings with $\Delta=0$ is generated by the previous grammar; we need only a small tweak to generate substrings with $\Delta=1$.

Here is one way to encode this case analysis as a CFG. The nonterminals M and L generate all strings where the number of 0 s is M ore or Less than twice the number of 1 s , respectively. The last nonterminal generates strings with $\Delta=0$ or $\Delta=1$.

$$
\begin{array}{rlr}
S & \rightarrow M \mid L & \left\{0^{m} 1^{n} \mid m \neq 2 n\right\} \\
M & \rightarrow 0 M \mid 0 E & \left\{0^{m} 1^{n} \mid m>2 n\right\} \\
L & \rightarrow L 1 \mid E 1 & \left\{0^{m} 1^{n} \mid m<2 n\right\} \\
E & \rightarrow \varepsilon|0| 00 E 1 & \left\{0^{m} 1^{n} \mid m=2 n \text { or } 2 n+1\right\}
\end{array}
$$

Here is a different correct solution using the same logic. We either identify a non-empty prefix of 0s or a non-empty prefix of 1 s , so that the rest of the string is as "balanced" as possible. We also generate strings with $\Delta=1$ using a separate non-terminal.

$$
\begin{array}{lr}
S \rightarrow A E|E B| F B & \left\{0^{m} 1^{n} \mid m \neq 2 n\right\} \\
A \rightarrow 0 \mid 0 A & 0^{+}=\left\{0^{i} \mid i \geq 1\right\} \\
B \rightarrow 1 \mid 1 B & 1^{+}=\left\{1^{j} \mid j \geq 1\right\} \\
E \rightarrow \varepsilon \mid 00 E 1 & \left\{0^{m} 1^{n} \mid m=2 n\right\} \\
F \rightarrow 0 E & \left\{0^{m} 1^{n} \mid m=2 n+1\right\}
\end{array}
$$

Alternatively, we can separately generate all strings of the form $0^{\text {odd }} 1^{*}$, so that we don't have to worry about the case $\Delta=1$ separately.

$$
\begin{aligned}
S & \rightarrow D|M| L \\
D & \rightarrow 0|00 D| D 1 \\
M & \rightarrow 0 M \mid 0 E \\
L & \rightarrow L 1 \mid E 1 \\
E & \rightarrow \varepsilon \mid 00 E 1
\end{aligned}
$$

$$
\begin{array}{r}
\left\{0^{m} 1^{n} \mid m \neq 2 n\right\} \\
\left\{0^{m} 1^{n} \mid m \text { is odd }\right\} \\
\left\{0^{m} 1^{n} \mid m>2 n\right\} \\
\left\{0^{m} 1^{n} \mid m<2 n \text { and } m \text { is even }\right\} \\
\left\{0^{m} 1^{n} \mid m=2 n\right\}
\end{array}
$$

Solution:

Intuitively, we can parse any string $w \in L$ as follows. First, remove the first $2 k 0$ s and the last k 1s, for the largest possible value of k. The remaining string cannot be empty, and it must consist entirely of 0 s , entirely of 1 s , or a single 0 followed by 1 s .

$$
\begin{array}{lr}
S \rightarrow 00 S 1|A| B \mid C & \left\{0^{m} 1^{n} \mid m \neq 2 n\right\} \\
A \rightarrow 0 \mid 0 A & 0^{+} \\
B \rightarrow 1 \mid 1 B & 1^{+} \\
C \rightarrow 0 \mid 0 B & 01^{+}
\end{array}
$$

Lets elaborate on the above, since k is maximal, $w=0^{2 k} w^{\prime} 1^{k}$. If w^{\prime} starts with 00 , and ends with a 1 , then we can increase k by one. As such, w^{\prime} is either in 0^{+}or 1^{+}. If w^{\prime} contains both 0 s and 1 s , then it can contain only a single 0 , followed potentially by 1^{+}. We conclude that $w^{\prime} \in 0^{+}+1^{+}+01^{+}$.
$3\{0,1\}^{*} \backslash\left\{0^{2 n} 1^{n} \mid n \geq 0\right\}$

Solution:

This language is the union of the previous language and the complement of $0^{*} 1^{*}$, which is $(0+1)^{*} 10(0+$ $1)^{*}$.

$$
\begin{array}{lr}
S \rightarrow T \mid X & \{0,1\}^{*} \backslash\left\{0^{2 n} 1^{n} \mid n \geq 0\right\} \\
T \rightarrow 00 T 1|A| B \mid C & \left\{0^{m} 1^{n} \mid m \neq 2 n\right\} \\
A \rightarrow 0 \mid 0 A & 0^{+} \\
B \rightarrow 1 \mid 1 B & 1^{+} \\
C \rightarrow 0 \mid 0 B & 01^{+} \\
X \rightarrow Z 10 Z & (0+1)^{*} 10(0+1)^{*} \\
Z \rightarrow \varepsilon|0 Z| 1 Z & (0+1)^{*}
\end{array}
$$

Work on these later:

$4\left\{w \in\{0,1\}^{*} \mid \#(0, w)=2 \cdot \#(1, w)\right\}$ - Binary strings where the number of 0 s is exactly twice the number of 1 s .

Solution:

$S \rightarrow \varepsilon|S S| 00 S 1|0 S 1 S 0| 1 S 00$.
Here is a sketch of a correctness proof.
For any string w, let $\Delta(w)=\#(0, w)-2 \cdot \#(1, w)$. Suppose w is a binary string such that $\Delta(w)=0$. Suppose w is nonempty and has no non-empty proper prefix x such that $\Delta(x)=0$. There are three possibilities to consider:

- Suppose $\Delta(x)>0$ for every proper prefix x of w. In this case, w must start with 00 and end with 1. Thus, $w=00 x 1$ for some string $x \in L$.
- Suppose $\Delta(x)<0$ for every proper prefix x of w. In this case, w must start with 1 and end with 00 . Let x be the shortest non-empty prefix with $\Delta(x)=1$. Thus, $w=1 X 00$ for some string $x \in L$.
- Finally, suppose $\Delta(x)>0$ for some prefix x and $\Delta\left(x^{\prime}\right)<0$ for some longer proper prefix x^{\prime}. Let x^{\prime} be the shortest non-empty proper prefix of w with $\Delta<0$. Then $x^{\prime}=0 y 1$ for some substring y with $\Delta(y)=0$, and thus $w=0 y 1 z 0$ for some strings $y, z \in L$.

5 $\{0,1\}^{*} \backslash\left\{w w \mid w \in\{0,1\}^{*}\right\}$.

Solution:

All strings of odd length are in L.
Let w be any even-length string in L, and let $m=|w| / 2$. For some index $i \leq m$, we have $w_{i} \neq w_{m+i}$. Thus, w can be written as either $x 1 y 0 z$ or $x 0 y 1 z$ for some substrings x, y, z such that $|x|=i-1$, $|y|=m-1$, and $|z|=m-i$. We can further decompose y into a prefix of length $i-1$ and a suffix of length $m-i$. So we can write any even-length string $w \in L$ as either $x 1 x^{\prime} z^{\prime} 0 z$ or $x 0 x^{\prime} z^{\prime} 1 z$, for some strings $x, x^{\prime}, z, z^{\prime}$ with $|x|=\left|x^{\prime}\right|=i-1$ and $|z|=\left|z^{\prime}\right|=m-i$. Said more simply, we can divide w into two odd-length strings, one with a 0 at its center, and the other with a 1 at its center.

$$
\begin{array}{ll}
S \rightarrow A B|B A| A \mid B & \text { strings not of the form } w w \\
A \rightarrow 0 \mid \Sigma A \Sigma & \text { odd-length strings with } 0 \text { at } \\
B \rightarrow 1 \mid \Sigma B \Sigma & \text { odd-length strings with } 1 \text { at } \\
\Sigma \rightarrow 0 \mid 1 & \text { single character }
\end{array}
$$

