Prove that each of the following languages is not regular.

1. \{0^{2^n} \mid n \geq 0\}

Solution:

Choose \(F = \{0^{2^n} \mid n \geq 0\} \).

Let \(x \) and \(y \) be two arbitrary strings of \(F \) with \(x \neq y \).

Then \(x = 0^{2^i} \) and \(y = 0^{2^j} \) for some non-negative integers \(i \neq j \).

Choose \(z = 0^{2^i} \).

Then \(xz = 0^{2^i}0^{2^i} = 0^{2^{i+1}} \in L \).

And \(yz = 0^{2^j}0^{2^i} = 0^{2^i+2^j} \notin L \), because \(i \neq j \) (since \(2^i + 2^j \) cannot be a power of 2).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

2. \{0^{2n}1^n \mid n \geq 0\}

Solution:

Choose \(F = \{0^i \mid i \geq 0\} \).

Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).

Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).

Choose \(z = 0^i1^i \).

Then \(xz = 0^{2i}1^i \in L \).

And \(yz = 0^{i+j}1^i \notin L \), because \(i + j \neq 2i \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

3. \{0^{m1^n} \mid m \neq 2n\}

Solution:

Choose \(F = \{0^i \mid i \geq 0\} \).

Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).

Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).

Choose \(z = 0^i1^i \).

Then \(xz = 0^{2i}1^i \notin L \).

And \(yz = 0^{i+j}1^i \in L \), because \(i + j \neq 2i \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.
Strings over \{0, 1\} where the number of 0s is exactly twice the number of 1s.

Solution:
Choose \(F = \{0^i \mid i \geq 0\} \).
Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Choose \(z = 0^i 1^i \).
Then \(xz = 0^{2i} 1^i \in L \).
And \(yz = 0^{i+j} 1^i \notin L \), because \(i + j \neq 2i \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Solution:
If \(L \) were regular, then the language
\[
((0 + 1)^* \setminus L) \cap 0^*1^* = \{0^m 1^n \mid m \neq 2n\}
\]
would also be regular, because regular languages are closed under complement and intersection. But we just proved that \(\{0^m 1^n \mid m \neq 2n\} \) is not regular in problem 3. [This proof would be worth full credit in homework or an exam, if we do not explicitly specify that you should use the fooling set method.]

Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string \(([]\})\) is in this language, but the string \(([]\})\) is not, because the left and right delimiters don’t match.

Solution:
Choose \(F = \{ (^i \mid i \geq 0\} \).
Let \(x \) and \(y \) be two arbitrary strings in \(F \) with \(x \neq y \).
Then \(x = (^i \) and \(y = (^j \) for some non-negative integers \(i \neq j \).
Choose \(z = ^i \).
Then \(xz = (^i)^i \in L \).
And \(yz = (^j)^i \notin L \), because \(i \neq j \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Strings of the form \(w_1 \# w_2 \# \cdots \# w_n \) for some \(n \geq 2 \), where each substring \(w_i \) is a string in \(\{0, 1\}^* \), and some pair of substrings \(w_i \) and \(w_j \) are equal.
Solution:

Choose \(F = \{0^i \mid i \geq 0\} \).

Let \(x \) and \(y \) be arbitrary strings in \(F \) with \(x \neq y \).

Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).

Choose \(z = \#0^i \).

Then \(xz = 0^i \#0^i \in L \).

And \(yz = 0^j \#0^i \notin L \), because \(i \neq j \).

Thus, \(F \) is a fooling set for \(L \).

Because \(F \) is infinite, \(L \) cannot be regular.

Extra problems

7 \(\{ w \in (0 + 1)^* \mid w \text{ is the binary representation of a perfect square} \} \)

Solution:

Idea: We design our fooling set around numbers of the form \((2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1\), which has binary representation \(10^{k-2}10^k1\). The argument is somewhat simpler if we further restrict \(k \) to be even.

Choose \(F = \{10^{2i}1 \mid i \geq 0\} \).

Let \(x \) and \(y \) be two distinct arbitrary strings in \(F \).

Then \(x = 10^{2i-2}1 \) and \(y = 10^{2j-2}1 \), for some positive integers \(i \neq j \). Without loss of generality, assume \(i < j \). (Otherwise, swap \(x \) and \(y \).)

Choose \(z = 0^{2i}1 \).

Then \(xz = 10^{2i-2}10^{2i}1 \) is the binary representation of \(2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2 \), and therefore \(xz \in L \).

On the other hand, \(yz = 10^{2j-2}10^{2i}1 \) is the binary representation of \(2^{2i+2j} + 2^{2i+1} + 1 \). Simple algebra gives us the inequalities

\[
(2^{i+j})^2 = 2^{2i+2j} < 2^{2i+2j} + 2^{2i+1} + 1 < 2^{2(i+j)} + 2^{i+j+1} + 1 = (2^{i+j} + 1)^2.
\]

So \(2^{2i+2j} + 2^{2i+1} + 1 \) lies between two consecutive perfect squares, and thus is not a perfect square, which implies that \(yz \notin L \).

We conclude that \(F \) is a fooling set for \(L \). Because \(F \) is infinite, \(L \) cannot be regular.