Prove that each of the following languages is not regular.
$1 \quad\left\{0^{2^{n}} \mid n \geq 0\right\}$.

Solution:

Choose $F=\left\{0^{2^{n}} \mid n \geq 0\right\}$.
Let x and y be two arbitrary strings of F with $x \neq y$.
Then $x=0^{2^{i}}$ and $y=0^{2^{j}}$ for some non-negative integers $i \neq j$.
Choose $z=0^{2^{i}}$.
Then $x z=0^{2^{i}} 0^{2^{i}}=0^{2^{i+1}} \in L$.
And $y z=0^{2^{j}} 0^{2^{i}}=0^{2^{i}+2^{j}} \notin L$, because $i \neq j$ (since $2^{i}+2^{j}$ cannot be a power of 2).
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.
$2\left\{0^{2 n} 1^{n} \mid n \geq 0\right\}$

Solution:

Choose $F=\left\{0^{i} \mid i \geq 0\right\}$.
Let x and y be two arbitrary strings in F with $x \neq y$.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Choose $z=0^{i} 1^{i}$.
Then $x z=0^{2 i} 1^{i} \in L$.
And $y z=0^{i+j} 1^{i} \notin L$, because $i+j \neq 2 i$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.
$3 \quad\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}$

Solution:

Choose $F=\left\{0^{i} \mid i \geq 0\right\}$.
Let x and y be two arbitrary strings in F with $x \neq y$.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Choose $z=0^{i} 1^{i}$.
Then $x z=0^{2 i} 1^{i} \notin L$.
And $y z=0^{i+j} 1^{i} \in L$, because $i+j \neq 2 i$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

4 Strings over $\{0,1\}$ where the number of 0 s is exactly twice the number of 1 s .

Solution:

Choose $F=\left\{0^{i} \mid i \geq 0\right\}$.
Let x and y be two arbitrary strings in F with $x \neq y$.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Choose $z=0^{i} 1^{i}$.
Then $x z=0^{2 i} 1^{i} \in L$.
And $y z=0^{i+j} 1^{i} \notin L$, because $i+j \neq 2 i$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution:

If L were regular, then the language

$$
\left((0+1)^{*} \backslash L\right) \cap 0^{*} 1^{*}=\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}
$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\left\{0^{m} 1^{n} \mid m \neq 2 n\right\}$ is not regular in problem 3. [This proof would be worth full credit in homework or an exam, if we do not explicitly specify that you should use the fooling set method.]

5 Strings of properly nested parentheses (), brackets [], and braces \{\}. For example, the string ([])\{\} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution:

Choose $F=\left\{\left({ }^{i} \mid i \geq 0\right\}\right.$.
Let x and y be two arbitrary strings in F with $x \neq y$.
Then $x=\left({ }^{i}\right.$ and $y=\left({ }^{j}\right.$ for some non-negative integers $i \neq j$.
Choose $z=)^{i}$.
Then $x z=\left({ }^{i}\right)^{i} \in L$.
And $y z=\left({ }^{j}\right)^{i} \notin L$, because $i \neq j$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

6 Strings of the form $w_{1} \# w_{2} \# \cdots \# w_{n}$ for some $n \geq 2$, where each substring w_{i} is a string in $\{0,1\}^{*}$, and some pair of substrings w_{i} and w_{j} are equal.

Solution:

Choose $F=\left\{0^{i} \mid i \geq 0\right\}$.
Let x and y be arbitrary strings in F with $x \neq y$.
Then $x=0^{i}$ and $y=0^{j}$ for some non-negative integers $i \neq j$.
Choose $z=\# 0^{i}$.
Then $x z=0^{i} \# 0^{i} \in L$.
And $y z=0^{j} \# 0^{i} \notin L$, because $i \neq j$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Extra problems

$7 \quad\left\{w \in(0+1)^{*} \mid w\right.$ is the binary representation of a perfect square $\}$

Solution:

Idea: We design our fooling set around numbers of the form $\left(2^{k}+1\right)^{2}=2^{2 k}+2^{k+1}+1$, which has binary representation $10^{k-2} 10^{k} 1$. The argument is somewhat simpler if we further restrict k to be even.
Choose $F=\left\{10^{2 i} 1 \mid i \geq 0\right\}$.
Let x and y be two distinct arbitrary strings in F.
Then $x=10^{2 i-2} 1$ and $y=10^{2 j-2} 1$, for some positive integers $i \neq j$. Without loss of generality, assume $i<j$. (Otherwise, swap x and y.)
Choose $z=0^{2 i} 1$.
Then $x z=10^{2 i-2} 10^{2 i} 1$ is the binary representation of $2^{4 i}+2^{2 i+1}+1=\left(2^{2 i}+1\right)^{2}$, and therefore $x z \in L$.
On the other hand, $y z=10^{2 j-2} 10^{2 i} 1$ is the binary representation of $2^{2 i+2 j}+2^{2 i+1}+1$. Simple algebra gives us the inequalities

$$
\begin{aligned}
\left(2^{i+j}\right)^{2} & =2^{2 i+2 j} \\
& <\mathbf{2}^{\mathbf{2 i + 2 j}}+\mathbf{2}^{\mathbf{2 i + 1}}+\mathbf{1} \\
& <2^{2(i+j)}+2^{i+j+1}+1 \\
& =\left(2^{i+j}+1\right)^{2}
\end{aligned}
$$

So $2^{2 i+2 j}+2^{2 i+1}+1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $y z \notin L$.
We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.

