1 Let L be an arbitrary regular language. Prove that the language reverse $(L):=\left\{w^{R} \mid w \in L\right\}$ is regular. Hint: Consider a DFA M that accepts L and construct a NFA that accepts reverse (L).
2 Let L be an arbitrary regular language. Prove that the language $\operatorname{insert1}(L):=\{x 1 y \mid x y \in L\}$ is regular. Intuitively, $\operatorname{insert1}(L)$ is the set of all strings that can be obtained from strings in L by inserting exactly one 1. For example, if $L=\{\varepsilon, O O K!\}$, then $\operatorname{insert1}(L)=\{1,1 O O K!, O 1 O K!, O O 1 K!, O O K 1!, O O K!1\}$.

Work on these later:

3 Let L be an arbitrary regular language. Prove that the language delete $1(L):=\{x y \mid x 1 y \in L\}$ is regular. Intuitively, $\operatorname{delete} 1(L)$ is the set of all strings that can be obtained from strings in L by deleting exactly one 1. For example, if $L=\{101101,00, \varepsilon\}$, then $\operatorname{delete} 1(L)=\{01101,10101,10110\}$.
4 Consider the following recursively defined function on strings:

$$
\operatorname{stutter}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ a a \bullet \operatorname{stutter}(x) & \text { if } w=a x \text { for some symbol } a \text { and some string } x\end{cases}
$$

Intuitively, $\operatorname{stutter}(w)$ doubles every symbol in w. For example:

- $\operatorname{stutter}($ PRESTO $)=$ PPRREESSTTOO
- stutter $(H O C U S \diamond P O C U S)=H H O O C C U U S S \diamond P P O O C C U U S S$

Let L be an arbitrary regular language.

1. Prove that the language stutter $^{-1}(L):=\{w \mid \operatorname{stutter}(w) \in L\}$ is regular.
2. Prove that the language $\operatorname{stutter}(L):=\{\operatorname{stutter}(w) \mid w \in L\}$ is regular.

5 Consider the following recursively defined function on strings:

$$
\operatorname{evens}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ \varepsilon & \text { if } w=a \text { for some symbol } a \\ b \cdot \operatorname{evens}(x) & \text { if } w=a b x \text { for some symbols } a \text { and } b \text { and some string } x\end{cases}
$$

Intuitively, evens (w) skips over every other symbol in w. For example:

- $\operatorname{evens}(E X P E L L I A R M U S)=X E L A M S$
- $\operatorname{evens}(A V A D A \diamond K E D A V R A)=V D \diamond E A R$.

Once again, let L be an arbitrary regular language.

1. Prove that the language evens ${ }^{-1}(L):=\{w \mid$ evens $(w) \in L\}$ is regular.
2. Prove that the language $\operatorname{evens}(L):=\{\operatorname{evens}(w) \mid w \in L\}$ is regular.
