Describe a deterministic finite-state automata (DFA) that accept each of the following languages over the alphabet $\Sigma=\{0,1\}$. Describe briefly what each state in your DFAs means.

1 All strings containing the substring 000.
2 All strings not containing the substring 000.
3 All strings in which every run of 0 s has length at least 3 .
4 All strings in which no substring 000 appears before a 1 .
(Equivalently: All strings in which every substring 000 appears after every 1.)
5 All strings containing at least three 0s.
6 Every string except 000. (Hint: Don't try to be clever.)

Work on these later:

7 All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 1 .
8 All strings containing at least two 0s and at least one 1.
9 All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 2 .
10 (Hard.) All strings in which the substring 000 appears an even number of times. (For example, 0001000 and 0000 are in this language, but 00000 is not.)

