Give regular expressions for each of the following languages over the alphabet $\{0,1\}$ ．
1 All strings containing the substring 000.
｜Solution：$(0+1)^{*} 000(0+1)^{*}$
2 All strings not containing the substring 000.
【 Solution：$(1+01+001)^{*}(\varepsilon+0+00)$
\｜Solution：$(\varepsilon+0+00)(1(\varepsilon+0+00))^{*}$
3 All strings in which every run of 0 s has length at least 3 ．
｜Solution：$\left(1+0000^{*}\right)^{*}$
【 Solution：$(\varepsilon+1)\left(\left(\varepsilon+0000^{*}\right) 1\right)^{*}\left(\varepsilon+0000^{*}\right)$
4 All strings in which 1 does not appear after a substring 000 ．
\｜Solution：$(1+01+001)^{*} 0^{*}$
5 All strings containing at least three 0 s ．
【 Solution：$(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*}$
【 Solution： $1^{*} 01^{*} 01^{*} 0(0+1)^{*}$ or $(0+1)^{*} 01^{*} 01^{*} 01^{*}$
6 Every string except 000．（Hint：Don＇t try to be clever．）
Solution：Every string $w \neq 000$ satisfies one of three conditions：Either $|w|<3$ ，or $|w|=3$ and $w \neq 000$ ，or $|w|>3$ ．The first two cases include only a finite number of strings，so we just list them explicitly．The last case includes all strings of length at least 4 ．

$$
\begin{gathered}
\varepsilon+0+1+00+01+10+11 \\
+001+010+011+100+101+110+111 \\
+(1+0)(1+0)(1+0)(1+0)(1+0)^{*}
\end{gathered}
$$

Solution：$\varepsilon+0+00+(1+01+001+000(1+0))(1+0)^{*}$
7 All strings w such that in every prefix of w ，the number of 0 s and 1 s differ by at most 1 ．
I Solution：Equivalently，strings that alternate between 0s and 1s：$(01+10)^{*}(\varepsilon+0+1)$
8 （Hard．）All strings containing at least two 0s and at least one 1.
Solution：There are three possibilities for how such a string can begin：
－Start with 00 ，then any number of 0 s，then 1 ，then anything．
－Start with 01 ，then any number of 1 s ，then 0 ，then anything．
－Start with 1 ，then a substring with exactly two 0 s，then anything．
All together： $000^{*} 1(0+1)^{*}+011^{*} 0(0+1)^{*}+11^{*} 01^{*} 0(0+1)^{*}$
Or equivalently：$\left(000^{*} 1+011^{*} 0+11^{*} 01^{*} 0\right)(0+1)^{*}$

Solution:

There are three possibilities for how the three required symbols are ordered:

- Contains a 1 before two 0s: $(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*}$
- Contains a 1 between two $0 \mathrm{~s}:(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*}$
- Contains a 1 after two 0 s: $\quad(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*}$

So putting these cases together, we get the following:

$$
\begin{aligned}
&(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} \\
&+(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} \\
&+(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*}
\end{aligned}
$$

Solution: $(0+1)^{*}\left(101^{*} 0+011^{*} 0+01^{*} 01\right)(0+1)^{*}$

9 (Hard.) All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 2.
Solution: $\left(0(01)^{*} 1+1(10)^{*} 0\right)^{*} \cdot\left(\varepsilon+0(01)^{*}(0+\varepsilon)+1(10)^{*}(1+\varepsilon)\right)$
10 (Really hard.) All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)
Solution: Every string in $\{0,1\}^{*}$ alternates between (possibly empty) blocks of 0 s and individual 1 s ; that is, $\{0,1\}^{*}=\left(0^{*} 1\right)^{*} 0^{*}$. Trivially, every 000 substring is contained in some block of 0 s . Our strategy is to consider which blocks of 0 s contain an even or odd number of 000 substrings.
Let X denote the set of all strings in 0^{*} with an even number of 000 substrings. We easily observe that $X=\left\{0^{n} \mid n=1\right.$ or n is even $\}=0+(00)^{*}$.
Let Y denote the set of all strings in 0^{*} with an odd number of 000 substrings. We easily observe that $Y=\left\{0^{n} \mid n>1\right.$ and n is odd $\}=000(00)^{*}$.
We immediately have $0^{*}=X+Y$ and therefore $\{0,1\}^{*}=((X+Y) 1)^{*}(X+Y)$.
Finally, let L denote the set of all strings in $\{0,1\}^{*}$ with an even number of 000 substrings. A string $w \in\{0,1\}^{*}$ is in L if and only if an odd number of blocks of 0 s in w are in Y; the remaining blocks of 0s are all in X.

$$
L=\left((X 1)^{*} Y 1 \cdot(X 1)^{*} Y 1\right)^{*}(X 1)^{*} X
$$

Plugging in the expressions for X and Y gives us the following regular expression for L :

$$
\left(\left(\left(0+(00)^{*}\right) 1\right)^{*} \cdot 000(00)^{*} 1 \cdot\left(\left(0+(00)^{*}\right) 1\right)^{*} \cdot 000(00)^{*} 1\right)^{*} \cdot\left(\left(0+(00)^{*}\right) 1\right)^{*} \cdot\left(0+(00)^{*}\right)
$$

Whew!

