CS/ECE 374 A (Spring 2024)
 Homework 9 (due Apr 4 Thursday at 10am)

Instructions: As in previous homeworks.

Problem 9.1: We are given a weighted DAG (directed acyclic graph) $G=(V, E)$ with n vertices and m edges $(m \geq n)$, where each vertex v has a number $c(v)$. We are also given vertices $s, t, s^{\prime}, t^{\prime} \in V$, an integer $k \leq n$, and a number L. We want to find two length- k paths $\left\langle s, u_{1}, u_{2}, \ldots, u_{k-1}, t\right\rangle$ and $\left\langle s^{\prime}, v_{1}, v_{2}, \ldots, v_{k-1}, t^{\prime}\right\rangle$ in G, such that $\sum_{i=1}^{k-1}\left|c\left(u_{i}\right)-c\left(v_{i}\right)\right| \geq L$.
Describe an efficient algorithm to solve this problem. Do not use dynamic programming. Instead construct a new graph G^{\prime} (hint: use $O\left(k n^{2}\right)$ vertices) and run some known shortestpath algorithm on this graph. Analyze the running time as a function of m, n, k.

Problem 9.2: We are given a weighted directed graph G with n vertices and m edges ($m \geq n$), where all edge weights are positive and each edge is colored red or blue.
(a) (30 pts) Describe an efficient algorithm to determine whether there exists a cycle in G such that strictly more than $1 / 3$ of the edges are red.
Hint: Just apply a known algorithm. Observe that the condition is the same as: (\# blue edges) $-2 \cdot(\#$ red edges $)<0$.
(b) (70 pts) Describe an efficient algorithm to find a cycle in G such that strictly more than $1 / 3$ of the edges are red, while minimizing the sum of the edge weights in the cycle. For full credit, the running time should be close to $O\left(m n^{2}\right)$ (possibly with some logarithmic factors).
Hint: construct a new graph G^{\prime} where a vertex is of the form (v, i) where $v \in V$ and i is a (positive or negative) number in a certain range...

Note: the minimum-weight closed walk satisfying the condition must be a simple cycle, but why? This is needed to justify correctness.

