CS/ECE 374 A (Spring 2024)
Homework 6 (due Mar 7 Thursday at 10am)

Instructions: As in previous homeworks.

Note: In dynamic programming problems, you should follow all the steps below, unless stated
otherwise:

1.

first give a clear, precise definition of the subproblems (i.e., what the recursive function is
intended to compute);

. then derive a recursive formula to solve your subproblems (including base cases), with justi-

fication/explanation;

. specify a valid evaluation order;

. give pseudocode to evaluate your recursive formula bottom-up (using tables, and loops instead

of recursion); and

. analyze the running time;

. and if we explicitly ask for it, give pseudocode to output an optimal solution rather than just

the optimal value.

Do not jump directly to pseudocode. Do not skip step 1!

Problem 6.1: For a sequence of distinct numbers B = (b, ba, ..., by), define its associated string
o(B) =cica- ¢ € {/,\}* where ¢; =/ if b; < b;y1, and ¢; = \ if b; > b;y1.
Consider the following problem: given a sequence of distinct numbers A = (a1, aq,...,ay),
find a subsequence B = (a;,, @iy, . .., a;,) with iy < iy < --- < iy of maximum length, such

that o(B) does not contain /\/ nor \/\ as a substring.

(Example: For the input sequence A = (9, 13,3,11,15,4,6,10,7,1,5,2), one feasible solution
is the subsequence B = (9,3,11,15,10,7,1,5) of length 7 8, since its string o(B) = \//\\\/
avoids the pattern substrings /\/ and \/\. H—t—h—rn-lrt—h—m—se-l—u-t—rems—ept—rm-&-l—) (There is a
better solution of length 9 (see discussion on Ed), which is optimal, probably?) On the other
hand, B = (9, 3, ,7,1,5) is not feasible, since o(B) = \//\/\\/.)

(Fun Fact: there always exists a solution of length at least n/2 for any n > 7. This was first
proved in 2018; the proof is far from obvious... you don’t need to know this.)

(a) (80 pts) Design and analyze an efficient dynamic programming algorithm to compute
the optimal length. Aim for O(n?) running time for full credit.
(Hint: consider defining L(¢,/\) to be the maximum length of a subsequence B of
(a1, as,...,a;) subject to the constraints that the last element of B is a;, and o(B) ends
in /\ and avoids /\/ and \/\. Define other subproblems similarly...)

(b) (20 pts) Give pseudocode to output an optimal subsequence.



Problem 6.2: For a set @ of points with positive z- and y-coordinates in 2D, define STAIRCASE(Q)
to be the region

{(z,y): 0<z<gxand 0 <y <q.y for some ¢ = (¢g.x,q.y) € Q}.

Consider the following problem: given a set P of n points with positive distinct x- and y-
coordinates in 2D, and given a number k£ < n, find a subset Q C P of at most k£ points such
that the area of STAIRCASE((Q) is maximized.

(The higher-dimensional version of this problem is useful as a way to identify “important”
points in a large dataset. Below is an example of a feasible solution @, shown in red, for
kE=4.)

(a)

° (1,6)

¢ ; (6.1)

staircase with area 6 +3-4+2+1 =21

(80 pts) Design and analyze an efficient dynamic programming algorithm to compute
the optimal area (you don’t have to output an optimal subset). Aim for O(n?k) running
time for full credit.

(Hint: Why may we assume that @ is decreasing, i.e., the points of @ are of the form
qi,-.-,qe wWith 1.z < -+- < gg.x and q1.y > -+ > qu.y?)

(20 pts) Instead of maximizing the area, suppose we change the problem to finding a
subset ) C P that maximize the number of points of P inside STAIRCASE(Q). Describe
the changes to your recursive formula (no need to give complete pseudocode again), and
show that the algorithm can be implemented in O(n?) time (do not assume that k is a
constant).

(Bonus: A correct solution that has running time O(n?k) or better instead of O(n?) may
receive up to 5 extra points.)



