CS/ECE 374 A (Spring 2024) Homework 5 (due Feb 29 Thursday at 10am)

Instructions: As in previous homeworks.
In algorithm design problems, an algorithm is usually best described using pseudocode (not actual code!), together with an explanation of the ideas behind the algorithm and/or justification of correctness (if correctness is not obvious), and accompanied by an analysis of the running time. See https://courses.engr.illinois.edu/cs374al1/sp2024/hw_policies.html\#content.

Problem 5.1: A point p in 2D is specified by its x-coordinate $p . x$ and y-coordinate $p . y$.
We say that a set P of points in 2D is increasing if for every two points $p_{i}, p_{j} \in P$ with $p_{i} . x<p_{j} . x$, we have $p_{i} . y<p_{j} . y$. A set Q of points in 2D is decreasing if for every two points $q_{i}, q_{j} \in Q$ with $q_{i} . x<q_{j} . x$, we have $q_{i} . y>q_{j} . y$. Given an increasing point set P and a decreasing point set Q, a crossing point is a point s such that $P \cup\{s\}$ remains increasing and $Q \cup\{s\}$ remains decreasing; here, s may or may not be in $P \cup Q$. (A crossing point always exists between an increasing and a decreasing point set - you may use this fact without proof. You may assume that no two points have the same x - or y-coordinates.)
For example: for the increasing point set $P=\{(1,0),(4,1),(5,4),(8,5),(13,7)\}$ and the decreasing point set $Q=\{(0,11),(2,10),(7,6),(9,2),(11,1)\}$, a crossing point is (7.5, 4.5).
See below for another example, where P is drawn in black, Q in white, and a crossing point in red.

(a) (50 pts) Let P be an increasing set of points, and Q be a decreasing set of points. Suppose that P is given in sorted x-order, and Q is given in sorted x-order. Design and analyze an $O(\log |P| \log |Q|)$-time algorithm to find a crossing point.
(Hint: Pick the "middle" point p_{m} of P. Let q be the rightmost point in Q with $q \cdot x<p_{m} \cdot x$, and q^{\prime} be the leftmost point in Q with $q^{\prime} \cdot x>p_{m} \cdot x$ (how fast can we find q and q^{\prime} ?). By comparing $p_{m} . y$ with $q . y$ and $q^{\prime} \cdot y$, try to eliminate roughly half of P.)
(Bonus: A faster correct solution achieving $O(\log |P|+\log |Q|)$ running time may receive up to 10 extra points.)
(b) (50 pts) Suppose instead that P and Q are given in arbitrary order (i.e., not necessarily sorted). Design and analyze an $O(n)$-time algorithm to find a crossing point, where $n=|P|+|Q|$.
(Hint: the hint from (a) may still be helpful here, though you may consider picking the point with the median x-coordinate of $P \cup Q$ instead of P. You may use the linear-time algorithm for median finding or selection, from class, as a subroutine.)

Problem 5.2:

(a) (85 pts) Consider the following problem: given a sequence of integers b_{0}, \ldots, b_{n-1} all lying between $-M$ and M, compute the following rational number exactly:

$$
X=\sum_{i=0}^{n-1} \frac{16^{n-1-i}}{b_{i}}=\frac{16^{n-1}}{b_{0}}+\frac{16^{n-2}}{b_{1}}+\cdots+\frac{16^{0}}{b_{n-1}}
$$

More precisely, we want to compute the binary representation of some integers A and B (the numerator and denominator) such that $X=\frac{A}{B}$ (where $|B| \leq M^{n}$ and $|A|<16^{n} M^{n}$). Design an efficient divide-and-conquer algorithm to solve this problem. You may use Karatsuba's multiplication algorithm as a subroutine. Analyze the running time of your algorithm, which should be bounded by $O\left((n \log M)^{\log _{2} 3}\right)$.
(b) (15 pts) Define the sequence

$$
\pi_{n}=\sum_{i=0}^{n-1} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right)
$$

By applying part (a) show how to compute π_{n} for a given n. More precisely, we want to compute the binary representation of some integers A and B such that $\pi_{n}=\frac{A}{B}$. Analyze the running time as a function of n.
(Note: as you might have guessed, π_{n} converges to π; this result was due to Plouffe (1995).)

[^0]
[^0]: ${ }^{1}$ Generally, in a multi-part problem like this, if you are unable to solve (a), you can still do (b) under the assumption that (a) has been solved.

