Problem 5.1: A point \(p \) in 2D is specified by its \(x \)-coordinate \(p.x \) and \(y \)-coordinate \(p.y \).

We say that a set \(P \) of points in 2D is increasing if for every two points \(p_i, p_j \in P \) with \(p_i.x < p_j.x \), we have \(p_i.y < p_j.y \). A set \(Q \) of points in 2D is decreasing if for every two points \(q_i, q_j \in Q \) with \(q_i.x < q_j.x \), we have \(q_i.y > q_j.y \). Given an increasing point set \(P \) and a decreasing point set \(Q \), a crossing point is a point \(s \) such that \(P \cup \{s\} \) remains increasing and \(Q \cup \{s\} \) remains decreasing; here, \(s \) may or may not be in \(P \cup Q \). (A crossing point always exists between an increasing and a decreasing point set—you may use this fact without proof. You may assume that no two points have the same \(x \)- or \(y \)-coordinates.)

For example: for the increasing point set \(P = \{(1,0), (4,1), (5,4), (8,5), (13,7)\} \) and the decreasing point set \(Q = \{(0,11), (2,10), (7,6), (9,2), (11,1)\} \), a crossing point is \((7.5, 4.5)\).

See below for another example, where \(P \) is drawn in black, \(Q \) in white, and a crossing point in red.

(a) (50 pts) Let \(P \) be an increasing set of points, and \(Q \) be a decreasing set of points. Suppose that \(P \) is given in sorted \(x \)-order, and \(Q \) is given in sorted \(x \)-order. Design and analyze an \(O(\log |P| \log |Q|) \)-time algorithm to find a crossing point.
(Hint: Pick the “middle” point \(p_m \) of \(P \). Let \(q \) be the rightmost point in \(Q \) with \(q.x < p_m.x \), and \(q' \) be the leftmost point in \(Q \) with \(q'.x > p_m.x \) (how fast can we find \(q \) and \(q' \)?). By comparing \(p_m.y \) with \(q.y \) and \(q'.y \), try to eliminate roughly half of \(P \).)
(Bonus: A faster correct solution achieving \(O(\log |P| + \log |Q|) \) running time may receive up to 10 extra points.)
(b) (50 pts) Suppose instead that P and Q are given in arbitrary order (i.e., not necessarily sorted). Design and analyze an $O(n)$-time algorithm to find a crossing point, where $n = |P| + |Q|$.

(Hint: the hint from (a) may still be helpful here, though you may consider picking the point with the median x-coordinate of $P \cup Q$ instead of P. You may use the linear-time algorithm for median finding or selection, from class, as a subroutine.)

Problem 5.2:

(a) (85 pts) Consider the following problem: given a sequence of integers b_0, \ldots, b_{n-1} all lying between $-M$ and M, compute the following rational number exactly:

$$X = \sum_{i=0}^{n-1} \frac{16^{n-1-i}}{b_i} = \frac{16^{n-1}}{b_0} + \frac{16^{n-2}}{b_1} + \cdots + \frac{16^0}{b_{n-1}}.$$

More precisely, we want to compute the binary representation of some integers A and B (the numerator and denominator) such that $X = \frac{A}{B}$ (where $|B| \leq M^n$ and $|A| < 16^n M^n$). Design an efficient divide-and-conquer algorithm to solve this problem. You may use Karatsuba’s multiplication algorithm as a subroutine. Analyze the running time of your algorithm, which should be bounded by $O((n \log M)^{\log_2 3})$.

(b) (15 pts) Define the sequence

$$\pi_n = \sum_{i=0}^{n-1} \frac{1}{16^i} \left(\frac{4}{8i + 1} - \frac{2}{8i + 4} - \frac{1}{8i + 5} - \frac{1}{8i + 6} \right).$$

By applying part (a), show how to compute π_n for a given n. More precisely, we want to compute the binary representation of some integers A and B such that $\pi_n = \frac{A}{B}$. Analyze the running time as a function of n.

(Note: as you might have guessed, π_n converges to π; this result was due to Plouffe (1995).)

1 Generally, in a multi-part problem like this, if you are unable to solve (a), you can still do (b) under the assumption that (a) has been solved.