CS/ECE 374 A (Spring 2024) Homework 4 (due Feb 15 Thursday at 10am)

Instructions: As in previous homeworks.

- **Problem 4.1:** For each of the following languages, determine whether it is regular or not, and give a proof. To prove that a language is not regular, you should use the fooling set method. (To prove that a language is regular, you are allowed to use known facts about regular languages, e.g., closure properties, all finite languages are regular, ...)
 - (a) $\{0^{i}1^{j}0^{k} : j \text{ is divisible by } i+k, \text{ and } i+j+k \text{ is divisible by } 4, \text{ and } i, j, k \ge 5\}.$
 - (b) $\{xx^R 0x : x \in \{0,1\}^*\}$ (where x^R denotes the reverse of x).
 - (c) All strings $x \in \{0, 1\}^*$ such that x ends in a palindrome of length between 4 and 374.
 - (d) All strings $x \in \{0, 1\}^*$ such that x ends in a palindrome of length at least 374.
- **Problem 4.2:** Give a context-free grammar (CFG) for each of the following languages. You must provide explanation for how your grammar works, by describing in English what is generated by each non-terminal. (Formal proofs of correctness are not required.)
 - (a) All strings $x \in \{0, 1\}^*$ such that x ends in a palindrome of length at least 4.
 - (b) All strings $w = x0^i y$ where $x, y \in \{0, 1\}^*$ and $i \ge \frac{2|w|}{3}$.
 - (c) $\{0^i 1^j 0^k : k \ge 2i \text{ and } i+j+k \text{ is divisible by } 4\}.$