CS/ECE 374 A (Spring 2024) Homework 11 (due Apr 25 Thursday at 10am)

Instructions: As in previous homeworks. See also Past HW 11 for tips and examples of NPhardness proofs.

Problem 11.1: Consider the following problem called SUPER-SAT:
Input: a CNF Boolean formula F with m clauses and n variables.
Output: true iff there exists an assignment such that in each clause, strictly more than half of its literals are true.
(a) (10 pts) Prove that Super-SAT is in NP.
(b) (90 pts) Prove that SUPER-SAT is NP-hard, by reduction from the 3 SAT problem. Hint: given a 3CNF formula, create a new 5CNF formula...

Problem 11.2: Consider the following problem called Connections:
Input: a set X of M elements, a collection of N subsets $Y_{1}, \ldots, Y_{N} \subseteq X$, and numbers A and B with $A B=M$.
Output: true iff there exists a partition of X into A disjoint subsets Z_{1}, \ldots, Z_{A} each of size exactly B, such that for each $i \in\{1, \ldots, A\}$, the subset Z_{i} is contained in $Y_{j_{i}}$ for some $j_{i} \in\{1, \ldots, N\}$ (the j_{i} 's need not be distinct).

For example: for $X=\{1,2,3,4,5,6,7,8,9\}$, subsets $\{1,4,7,8\},\{2,3,5,7,9\},\{2,5,7,8\}$, $\{1,2,5,6,7\}$, and $A=B=3$, the answer is true (one feasible partition is $\{1,4,8\},\{3,5,9\}$, $\{2,6,7\})$.
[Note: This is inspired by a word puzzle from the New York Times (no, it's not Wordle!). The elements correspond to words, each subset Y_{i} corresponds to a potential category, and we want to form A groups of B words, such that each group fits in a common category; in the game, $A=B=4$ and $M=16$, but the subsets/categories are not given explicitly...]
[For those who don't like games (but who doesn't?), a more serious motivation is in clustering large datasets into A groups...]
(a) (10 pts) Prove that Connections is in NP.
(b) (90 pts) Prove that Connections is NP-hard, by reduction from the vertex cover problem.
Recall that in the vertex cover (decision) problem, the input is an undirected graph $G=(V, E)$ and a number K, and the output is true iff there exists a subset $S \subseteq V$ of K vertices such that each edge $u v \in E$ has $u \in S$ or $v \in S$.
Hint: let the elements of X correspond to the edges of the given graph; also add some number of extra "dummy" elements. For each vertex v, create a subset containing all edges incident to v together with all the dummy elements...

