
Skillset for Final CS/ECE 374 A: Algorithms & Models of Computation (Spring 2024) Ver: 1.01

The �nal exam is cumulative and will test material covered in the entire course.

Post midterm 2 skillset:

1. Greedy algorithms

(a) Ability to design simple greedy algorithms

(b) Ability to recognize incorrect greedy algorithms by giving counterexamples

(c) Ability to prove correctness via exchange arguments

2. Algorithms and properties of minimum spanning trees

(a) Cut properties to understand when a spanning tree is an MST.

(b) Standard algorithms for MST: Kruskal, Prim. Run times and high-level implementation ideas.

3. NP, NP-Completeness and Polynomial-time Reductions

(a) De�nitions of P, NP, NP-Complete, NP-Hard

(b) Knowledge of standard NP-Complete problems: SAT, 3SAT, Independent Set, Clique, Vertex Cover, Set Cover,
Subset Sum, Hamiltonian Cycle/Path in directed/undirected graphs, 3Coloring.

(c) Ability to prove that a given problem is in NP

(d) Ability to prove that a given problem is NP-Hard via a polynomial time reduction from an existing NP-Hard
problem from the given list.

(e) Understand the de�nition of a polynomial-time reduction and its implications.

(f) Ability to prove correctness of reductions

(g) Understand basic boolean logic and properties of SAT formulas to enable reductions

4. Undecidability

(a) De�nition of decidable/recursive and recursively enumerable.

(b) Knowledge that halting and related prbolems are undecidable.

(c) Ability to prove that problems on program behavior are undecidable via reductions from halting and related
problems.

Midterm 2 skillset:

1. Divide and Conquer Paradigm

(a) Solving recurrences characterizing the running time of divide and conquer algorithms.

(b) Familiarity with speci�c Divide and Conquer Algorithms and the running times: Binary Search, Merge Sort,
Quick Sort, Karatsuba's Algorithm, Linear Selection.

(c) Ability to design and analyze divide and conquer algorithms for new problems.

2. Backtracking and Dynamic Programming Algorithms

(a) Using the dynamic programming methodology to design algorithms for new problems.

(b) Ability to analyze the running time of dynamic programming algorithms.

3. Graphs

(a) Basic de�nitions of undirected and directed graphs, DAGs, paths, cycles.

(b) De�nitions of reachable nodes, connected components, and strongly connected components.

(c) Understand the structure of directed graphs in terms of the meta-graph of strongly connected components.

1



(d) Understand the structure of DAGs: sources, sinks and topological sort.

4. Graph Search

(a) Understand properties of the basic search algorithm and its running time.

(b) Understand properties of depth �rst search traversal on directed and undirected graph.

(c) Understand properties of the depth �rst search tree.

(d) Understand properties of depth �rst search traversal on directed and undirected graph.

(e) Algorithms based on search for �nding connected components in undirected graphs, checking whether a graph
is a DAG, topological sort for DAGs, �nding a cycle in a graph etc. Existence of a linear-time algorithm to
compute strongly connected components and create the meta-graph.

5. Shortest Paths in Graphs

(a) Understand properties of the breadth �rst search tree.

(b) Understand properties of breadth �rst search traversal on directed and undirected graph to �nd distances in
unweighted graphs.

(c) Dijkstra's algorithm for �nding single-source shortest paths in undirected and directed graphs with non-negative
edge lengths.

(d) Negative length edges and Bellman-Ford algorithm to check for negative length cycles or �nd shortest paths if
there is none.

(e) Single-source shortest paths in DAGs � linear time algorithm for arbitrary edge lengths.

(f) Shortest path trees and their basic properties.

(g) Dynamic programming for shortest path problems in graphs.

6. Graph reductions and tricks

(a) Modeling problems via graphs and solving them using graph structure, reachability and shortest path algo-
rithms.

(b) Adding sources, sinks, splitting edges, nodes

(c) Creating layered graphs

Midterm 1 skillset:

1. Basic mathematics

(a) Comfort with set notation, especially set operations like cross product and power set. Should know how to read
and understand formally described sets, and should be able to describe new sets precisely.

(b) Familiarity with alphabets, strings, and languages.

(c) Ability to critically evaluate proofs and write proofs, especially induction proofs.

(d) Ability to comprehend inductive de�nitions.

2. Formal models of computation (regular expressions, DFAs, NFAs, CFGs)

(a) Understand formal de�nitions of machines, grammars and expressions. Be able to execute machines on simple
examples, and infer if strings belong to sets de�ned by expressions/grammars. Understand what it means for
a language to be described/accepted by a computational model.

(b) Ability to design machines/grammar/expressions to describe/accept languages. Ability to formally describe
them.

3. Transformations between computational models

(a) Familiarity with proofs transforming NFAs to DFAs, and regular expressions to NFAs. Ability to carry out
these constructions on examples.

(b) Familiarity with the cross product construction to run multiple machines simultaneously.

2



(c) Know asymptotic bounds of the resulting automata constructed by these transformations.

(d) Ability to perform new transformations on automata to prove regularity or construct automata/expressions
with special properties.

4. Closure properties

(a) Know standard closure properties (concatenation, union, intersection, complementation, set di�erence, Kleene
star, reverse) for regular languages covered in lectures, labs and homework. Understand the proofs for these
properties.

(b) Know how to prove new closure properties either through automata tranformations or using previously estab-
lished closure properties.

5. Non-regularity

(a) Ability to distinguish regular and non-regular languages

(b) Ability to prove languages to be non regular using the fooling set argument. Know how to prove lower bounds
on the number of DFA states using the fooling set argument as well.

3


