
CS/ECE 374 A: Algorithms & Models of Computation Version: 1.0 Spring 2024

This is a �core dump� of potential questions for the �nal exam. This should give you a good idea of the
types of questions that we will ask on the exam. In particular, there will be a series of True/False or short-
answer questions�but the actual exam questions may or may not appear in this handout. This list intentionally
includes a few questions that are too long or di�cult for exam conditions; these are indicated with a ∗star.

Don't forget to review the study problems for Midterms 1 and 2; the �nal exam is cumulative!

Solving every problem in this handout is not the best way to study for the exam. Memorizing

the solutions to every problem in this handout is the absolute worst way to study for the

exam.

What we recommend instead is to work on a sample of the problems. Choose one or two problems at
random from each section and try to solve them from scratch under exam conditions�by yourself, in a
quiet room, with a 30-minute timer, without your notes, without the internet, and if possible, even without
your cheat sheet. If you're comfortable solving a few problems in a particular section, you're probably
ready for that type of problem on the exam. Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in o�ce hours, or
on Ed/Discord) and/or looking up old solutions can be extremely helpful, but only after you have (1)
made a good-faith e�ort to solve the problem on your own, and (2) you have either a candidate solution
or some idea about where you're getting stuck.

If you �nd yourself getting stuck on a particular type of problem, try to �gure out why you're stuck. Do
you understand the problem statement? Are you stuck on choosing the right high-level approach? Are
you stuck on the technical details? Or are you struggling to express your ideas clearly? (We strongly
recommend writing solutions that follow the homework grading rubrics bullet-by-bullet.)

Similarly, if feedback from other people suggests that your solutions to a particular type of problem are
incorrect or incomplete, try to �gure out what you missed. For NP-hardness proofs: Are you choosing
a good problem to reduce from? Are you reducing in the correct direction? Are you designing your
reduction with both good instances and bad instances in mind? You're not trying solve the problem, are
you? For undecidability proofs: Does the problem have the right structure to apply Rice's theorem? If
you are arguing by reduction, are you reducing in the correct direction? You're not using pronouns, are
you?

Remember that your goal is not merely to �understand� the solution to any particular problem, but to
become more comfortable with solving a certain type of problem on your own. �Understanding� is a
trap; aim for mastery. If you can identify speci�c steps that you �nd problematic, read more about
those steps, focus your practice on those steps, and try to �nd helpful information about those steps to
write on your cheat sheet. Then work on the next problem!

1



True or False?

For each statement below, write �YES� or �True� if the statement is always true and �NO� or �False� otherwise,
and give a brief (at most one short sentence) explanation of your answer. Assume P ̸= NP. If there is any
other ambiguity or uncertainty about an answer, write �NO� or �False�. For example:

� x+ y = 5
NO � Suppose x = 3 and y = 4.

� 3SAT can be solved in polynomial time.
NO � 3SAT is NP-hard.

� If P = NP then Je� is the Queen of England.
YES � The hypothesis is false, so the implication is true.

1 Which of the following are clear English speci�cations of a recursive function that could possibly be used
to compute the edit distance between two strings A[1 . . n] and B[1 . . n]?

1.A. Edit(i, j) is the answer for i and j.

1.B. Edit(i, j) is the edit distance between A[i] and B[j].

1.C. Edit[i, j] =


i if j = 0
j if i = 0
Edit[i− 1, j − 1] if A[i] = B[j]

max {1 + Edit[i, j − 1], 1 + Edit[i− 1, j], 1 + Edit[i− 1, j − 1]} otherwise

1.D. Edit[1 . . n, 1 . . n] stores the edit distances for all pre�xes.

1.E. Edit(i, j) is the edit distance between A[i . . n] and B[j . . n].

1.F. Edit[i, j] is the value stored at row i and column j of the table.

1.G. Edit(i, j) is the edit distance between the last i characters of A and the last j characters of B.

1.H. Edit(i, j) is the edit distance when i and j are the current characters in A and B.

1.I. Iterate through both strings and update Edit[·, ·] at each character.

1.J. Edit(i, j, k, l) is the edit distance between substrings A[i . . j] and B[k . . l].

1.K. [I don't need an English description; my pseudocode is clear enough!]

2 Which of the following statements is true for every directed graph G = (V,E)?

2.A. E ̸= ∅.
2.B. Given the graph G as input, Floyd-Warshall runs in O(E3) time.

2.C. If G has at least one source and at least one sink, then G is a dag.

2.D. We can compute a spanning tree of G using whatever-�rst search.

2.E. If the edges of G are weighted, we can compute the shortest path from any node s to any node t in
O(E log V ) time using Dijkstra's algorithm.

3 Which of the following statements are true for every language L ⊆ {0, 1}∗?

3.A. L is non-empty.

2



3.B. L is in�nite.

3.C. L contains the empty string ε.

3.D. L∗ is in�nite.

3.E. L∗ is regular.

3.F. L is accepted by some DFA if and only if L is accepted by some NFA.

3.G. L is described by some regular expression if and only if L is rejected by some NFA.

3.H. L is accepted by some DFA with 42 states if and only if L is accepted by some NFA with 42 states.

3.I. If L is decidable, then L is in�nite.

3.J. If L is not decidable, then L is in�nite.

3.K. If L is not regular, then L is undecidable.

3.L. If L has an in�nite fooling set, then L is undecidable.

3.M. If L has a �nite fooling set, then L is decidable.

3.N. If L is the union of two regular languages, then its complement L is regular.

3.O. If L is the union of two regular languages, then its complement L is context-free.

3.P. If L is the union of two decidable languages, then L is decidable.

3.Q. If L is the union of two undecidable languages, then L is undecidable.

3.R. If L ̸∈ P, then L is not regular.

3.S. L is decidable if and only if its complement L is undecidable.

3.T. Both L and its complement L are decidable.

4 Which of the following statements are true for at least one language L ⊆ {0, 1}∗?

4.A. L is non-empty.

4.B. L is in�nite.

4.C. L contains the empty string ε.

4.D. L∗ is �nite.

4.E. L∗ is not regular.

4.F. L is not regular but L∗ is regular.

4.G. L is �nite and L is undecidable.

4.H. L is decidable but L∗ is not decidable.

4.I. L is not decidable but L∗ is decidable.

4.J. L is the union of two decidable languages, but L is not decidable.

4.K. L is the union of two undecidable languages, but L is decidable.

4.L. L is accepted by an NFA with 374 states, but L is not accepted by a DFA with 374 states.

4.M. L is accepted by an DFA with 374 states, but L is not accepted by a NFA with 374 states.

4.N. L is regular and L ̸∈ P.

4.O. There is a Turing machine that accepts L.

4.P. There is an algorithm to decide whether an arbitrary given Turing machine accepts L.

5 Which of the following languages over the alphabet {0, 1} are regular?

3



5.A. {0m1n | m ≥ 0 and n ≥ 0}
5.B. All strings with the same number of 0s and 1s

5.C. Binary representations of all positive integers divisible by 17

5.D. Binary representations of all prime numbers less than 10100

5.E.
{
ww

∣∣ w is a palindrome
}

5.F.
{
wxw

∣∣ w is a palindrome and x ∈ {0, 1}∗
}

5.G.
{
⟨M⟩

∣∣ M accepts a regular language
}

5.H.
{
⟨M⟩

∣∣ M accepts a �nite number of non-palindromes
}

6 Which of the following languages/decision problems are decidable?

6.A. ∅
6.B.

{
0
n
1
2n
0
n
1
2n

∣∣ n ≥ 0
}

6.C.
{
ww

∣∣ w is a palindrome
}

6.D.
{
⟨M⟩

∣∣ M accepts ⟨M⟩ � ⟨M⟩
}

6.E.
{
⟨M⟩

∣∣ M accepts a �nite number of non-palindromes
}

6.F.
{
⟨M⟩ � w

∣∣ M accepts ww
}

6.G.
{
⟨M⟩ � w

∣∣∣ M accepts ww after at most
∣∣w∣∣2 steps}

6.H. Given an NFA N , is the language L(N) in�nite?

6.I. sat

6.J. Given an undirected graph G, does G contain a Hamiltonian cycle?

6.K. Given encodings of two Turing machines M and M ′, is there a string w that is accepted by both M
and M ′?

7 Recall the halting language Halt = {⟨M⟩ � w |M halts on input w}. Which of the following statements
about its complement Halt = Σ∗ \Halt are true?

7.A. Halt is empty.

7.B. Halt is regular.

7.C. Halt is in�nite.

7.D. Halt is in NP.

7.E. Halt is decidable.

8 Suppose some language A ∈ {0, 1}∗ reduces to another language B ∈ {0, 1}∗. Which of the following
statements must be true?

8.A. A Turing machine that recognizes A can be used to construct a Turing machine that recognizes B.

8.B. A is decidable.

8.C. If B is decidable then A is decidable.

8.D. If A is decidable then B is decidable.

8.E. If B is NP-hard then A is NP-hard.

8.F. If A has no polynomial-time algorithm then neither does B.

4



9 Suppose there is a polynomial-time reduction from problem A to problem B. Which of the following
statements must be true?

9.A. Problem B is NP-hard.

9.B. A polynomial-time algorithm for B can be used to solve A in polynomial time.

9.C. If B has no polynomial-time algorithm then neither does A.

9.D. If A is NP-hard and B has a polynomial-time algorithm then P = NP.

9.E. If B is NP-hard then A is NP-hard.

9.F. If B is undecidable then A is undecidable.

10 Consider the following pair of languages:

� HamPath :=
{
G

∣∣ G is an undirected graph with a Hamiltonian path
}

� Connected :=
{
G

∣∣ G is a connected undirected graph
}

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency
matrices.) Which of the following must be true, assuming P ̸=NP?

10.A. Connected ∈ NP

10.B. HamPath ∈ NP

10.C. HamPath is decidable.

10.D. There is no polynomial-time reduction from HamPath to Connected.

10.E. There is no polynomial-time reduction from Connected to HamPath.

11 Consider the following pair of languages:

� DirHamPath :=
{
G

∣∣ G is a directed graph with a Hamiltonian path
}

� Acyclic :=
{
G

∣∣ G is a directed acyclic graph
}

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency
matrices.) Which of the following must be true, assuming P ̸=NP?

11.A. Acyclic ∈ NP

11.B. Acyclic ∩DirHamPath ∈ P

11.C. DirHamPath is decidable.

11.D. There is a polynomial-time reduction from DirHamPath to Acyclic.

11.E. There is a polynomial-time reduction from Acyclic to DirHamPath.

12 Consider the following pair of languages:

� 3Color :=
{
G

∣∣ G is a 3-colorable undirected graph
}

� Tree :=
{
G

∣∣ G is a connected acyclic undirected graph
}

(For concreteness, assume that in both of these languages, graphs are represented by adjacency matrices.)
Which of the following must be true, assuming P ̸=NP?

12.A. Tree is NP-hard.

5



12.B. Tree ∩ 3Color ∈ P

12.C. 3Color is undecidable.

12.D. There is a polynomial-time reduction from 3Color to Tree.

12.E. There is a polynomial-time reduction from Tree to 3Color.

13 Suppose we want to prove that the following language is undecidable.

AlwaysHalts :=
{
⟨M⟩

∣∣ M halts on every input string
}

Rocket J. Squirrel suggests a reduction from the standard halting language

Halt :=
{
(⟨M⟩, w)

∣∣ M halts on inputs w
}
.

Speci�cally, given a Turing machine DecideAlwaysHalts that decides AlwaysHalts, Rocky claims
that the following Turing machine DecideHalt decides Halt.

DecideHalt(⟨M⟩, w):
Write code for the following algorithm:

Bullwinkle(x):

if M accepts w
reject

if M rejects w
accept

return DecideAlwaysHalts(⟨Bullwinkle⟩)

Which of the following statements is true for all inputs ⟨M⟩#w?

13.A. If M accepts w, then M ′ halts on every input string.

13.B. If M rejects w, then M ′ halts on every input string.

13.C. If M diverges on w, then M ′ halts on every input string.

13.D. If M accepts w, then DecideAlwaysHalts accepts ⟨Bullwinkle⟩.
13.E. If M rejects w, then DecideHalt rejects (⟨M⟩, w).
13.F. If M diverges on w, then DecideAlwaysHalts diverges on ⟨Bullwinkle⟩.
13.G. DecideHalt decides Halt. (That is, Rocky's reduction is correct.)

14 Suppose we want to prove that the following language is undecidable.

Muggle :=
{
⟨M⟩

∣∣ M accepts SCIENCE but rejects MAGIC
}

Professor Potter, your instructor in Defense Against Models of Computation and Other Dark Arts, suggests
a reduction from the standard halting language

Halt :=
{
(⟨M⟩, w)

∣∣ M halts on inputs w
}
.

Speci�cally, suppose there is a Turing machine DetectoMuggletum that decides Muggle. Professor
Potter claims that the following algorithm decides Halt.

6



DecideHalt(⟨M⟩, w):
Write code for the following algorithm:

RubberDuck(x):

run M on input w

if x = MAGIC

return False

else

return True

return DetectoMuggletum(⟨RubberDuck⟩)

Which of the following statements must be true for all inputs ⟨M⟩#w?

14.A. If M accepts w, then RubberDuck accepts SCIENCE.

14.B. If M accepts w, then RubberDuck accepts CHOCOLATE.

14.C. If M rejects w, then RubberDuck rejects MAGIC.

14.D. If M rejects w, then RubberDuck halts on every input string.

14.E. If M diverges on w, then RubberDuck rejects every input string.

14.F. If M accepts w, then DetectoMuggletum accepts ⟨RubberDuck⟩.
14.G. If M rejects w, then DecideHalt rejects (⟨M⟩, w).
14.H. If M diverges on w, then DecideHalt rejects (⟨M⟩, w).
14.I. DecideHalt decides the language Halt. (That is, Professor Potter's reduction is actually correct.)

14.J. DecideHalt actually runs (or simulates) RubberDuck.

14.K. Muggle is decidable.

15 Suppose we want to prove that the following language is undecidable.

Marvin :=
{
⟨M⟩

∣∣ M rejects an in�nite number of strings
}

Professor Beeblebrox, your instructor in In�nitely Improbable Galactic Presidencies, suggests a reduction
from the standard halting language

Halt :=
{
(⟨M⟩, w)

∣∣ M halts on inputs w
}
.

Speci�cally, suppose there is a program ParanoidAndroid that decides Marvin. Professor Beeblebrox
claims that the following algorithm decides Halt.

DecideHalt(⟨M⟩, w):
Write code for the following algorithm:

HeartOfGold(x):

run M on input w

if x = VOGONPOETRY

return False

else

return True

return ParanoidAndroid(⟨HeartOfGold⟩)

Which of the following statements is true for all inputs (⟨M⟩, w)?

15.A. If M accepts w, then HeartOfGold accepts VOGONPOETRY.

15.B. If M accepts w, then HeartOfGold accepts IMPROBABILITY.

7



15.C. If M rejects w, then HeartOfGold rejects VOGONPOETRY.

15.D. If M rejects w, then HeartOfGold rejects IMPROBABILITY.

15.E. If M hangs on w, then HeartOfGold accepts VOGONPOETRY.

15.F. If M hangs on w, then HeartOfGold rejects IMPROBABILITY.

15.G. If M hangs on w, then HeartOfGold hangs on NEILYOUNG.

15.H. ParanoidAndroid accepts OKCOMPUTER.

15.I. ParanoidAndroid accepts ⟨HeartOfGold⟩.
15.J. ParanoidAndroid rejects ⟨HeartOfGold⟩.
15.K. ParanoidAndroid actually runs (or simulates running) HeartOfGold.

15.L. DecideHalt decides Halt; that is, Professor Beeblebrox's proof is correct.

8



NP-Hardness

16 A boolean formula is in disjunctive normal form (or DNF ) if it consists of a disjunction (Or) or several
terms, each of which is the conjunction (And) of one or more literals. For example, the formula

(x ∧ y ∧ z) ∨ (y ∧ z) ∨ (x ∧ y ∧ z)

is in disjunctive normal form. DNF-Sat asks, given a boolean formula in disjunctive normal form, whether
that formula is satis�able.

16.A. Describe a polynomial-time algorithm to solve DNF-Sat.

16.B. What is the error in the following argument that P=NP?

Suppose we are given a boolean formula in conjunctive normal form with at most three literals per clause,
and we want to know if it is satis�able. We can use the distributive law to construct an equivalent formula
in disjunctive normal form. For example,

(x ∨ y ∨ z) ∧ (x ∨ y) ⇐⇒ (x ∧ y) ∨ (y ∧ x) ∨ (z ∧ x) ∨ (z ∧ y)

Now we can use the algorithm from part (a) to determine, in polynomial time, whether the resulting DNF
formula is satis�able. We have just solved 3Sat in polynomial time. Since 3Sat is NP-hard, we must
conclude that P=NP!

17 A relaxed 3-coloring of a graph G assigns each vertex of G one of three colors (for example, red, green,
and blue), such that at most one edge in G has both endpoints the same color.

17.A. Give an example of a graph that has a relaxed 3-coloring, but does not have a proper 3-coloring
(where every edge has endpoints of di�erent colors).

17.B. Prove that it is NP-hard to determine whether a given graph has a relaxed 3-coloring.

18 An ultra-Hamiltonian tour in G is a closed walk W that visits every vertex of G exactly once, except
for at most one vertex that W visits more than once.

18.A. Give an example of a graph that contains a ultra-Hamiltonian tour, but does not contain a Hamilto-
nian cycle (which visits every vertex exactly once).

18.B. Prove that it is NP-hard to determine whether a given graph contains a ultra-Hamiltonian tour.

19 An infra-Hamiltonian cycle in G is a closed walk W that visits every vertex of G exactly once, except
for at most one vertex that W does not visit at all.

19.A. Give an example of a graph that contains a infra-Hamiltonian cycle, but does not contain a Hamil-
tonian cycle (which visits every vertex exactly once).

19.B. Prove that it is NP-hard to determine whether a given graph contains a infra-Hamiltonian cycle.

20 A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth values to the
variables such that at most one clause in Φ does not contain a true literal. Prove that it is NP-hard to
determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

21 A subset S of vertices in an undirected graph G is half-independent if each vertex in S is adjacent to at
most one other vertex in S. Prove that �nding the size of the largest half-independent set of vertices in a
given undirected graph is NP-hard.

22 A subset S of vertices in an undirected graph G is sort-of-independent if if each vertex in S is adjacent
to at most 374 other vertices in S. Prove that �nding the size of the largest sort-of-independent set of
vertices in a given undirected graph is NP-hard.

9



23 A subset S of vertices in an undirected graph G is almost independent if at most 374 edges in G have
both endpoints in S. Prove that �nding the size of the largest almost-independent set of vertices in a given
undirected graph is NP-hard.

24 Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C that passes
through each vertex of G exactly once, such that the total weight of the edges in C is more than half of
the total weight of all edges in G. Prove that deciding whether a graph has a heavy Hamiltonian cycle is
NP-hard.

CS/ECE ��� Lab ��½ — November �� Fall ����

Proving that a problem X is NP-hard requires several steps:

• Choose a problem Y that you already know is NP-hard (because we told you so in class).

• Describe an algorithm to solve Y , using an algorithm for X as a subroutine. Typically this
algorithm has the following form: Given an instance of Y , transform it into an instance
of X , and then call the magic black-box algorithm for X .

• Prove that your algorithm is correct. This always requires two separate steps, which are
usually of the following form:

– Prove that your algorithm transforms “good” instances of Y into “good” instances
of X .

– Prove that your algorithm transforms “bad” instances of Y into “bad” instances of X .
Equivalently: Prove that if your transformation produces a “good” instance of X , then
it was given a “good” instance of Y .

• Argue that your algorithm for Y runs in polynomial time.

�. Recall the following kC���� problem: Given an undirected graph G, can its vertices be
colored with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from �C���� to �C����.

(b) Prove that kC���� problem is NP-hard for any k � 3.

�. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G.
Prove that deciding whether a graph contains a tonian cycle is NP-hard.

To think about later:

�. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if
the total weight of edges in the cycle is at least half of the total weight of all edges in G.
Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

4

8

2

7

5

3

1

12

8

6

5

9

5

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

�

Figure 1: A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

2525.A. A tonian path in a graph G is a path that goes through at least half of the vertices of G. Show that
determining whether a graph has a tonian path is NP-hard.

25.B. A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Show
that determining whether a graph has a tonian cycle is NP-hard.

(
Hint: Use part (a). Or not.

)
26 Prove that the following variants of SAT is NP-hard.

(
Hint: Describe reductions from 3SAT.

)
26.A. Given a boolean formula Φ in conjunctive normal form, where each variable appears in at most three

clauses, determine whether Φ has a satisfying assignment.
(
Hint: First consider the variant where

each variable appears in at most �ve clauses.
)

26.B. Given a boolean formula Φ in conjunctive normal form and given one satisfying assignment for Φ,
determine whether Φ has at least one other satisfying assignment.

27 Jerry Springer and Maury Povich have decided not to compete with each other over scheduling guests
during the next talk-show season. There is only one set of Weird People who either host would consider
having on their show. The hosts want to divide the Weird People into two disjoint subsets: those to appear
on Jerry's show, and those to appear on Maury's show. (Neither wants to �recycle� a guest that appeared
on the other's show.)

Both Jerry and Maury have preferences about which Weird People they are particularly interested in. For
example, Jerry wants at least one guest who �ts the description �was abducted by a �ying saucer�. Thus,
on his list of preferences, he writes �w1 or w3 or w45�, since weird people numbered 1, 3, and 45 are the
only ones who �t that description. Jerry has other preferences as well, so he lists those also. Similarly,
Maury might like to include at least one guest who �really enjoys Rice's theorem�. Each potential guest
may fall into any number of di�erent categories, such as the person who enjoys Rice's theorem more than
their involuntary �ying-saucer voyage.

Jerry and Maury each prepare a list re�ecting all of their preferences. Each list contains a collection of
statements of the form �(wi or wj or wk)�. Your task is to prove that it is NP-hard to �nd an assignment
of weird guests to the two shows that satis�es all of Jerry's preferences and all of Maury's preferences.

27.A. The problem NoMixedClauses3Sat is the special case of 3Sat where the input formula cannot
contain a clause with both a negated variable and a non-negated variable. Prove that NoMixed-
Clauses3Sat is NP-hard.

(
Hint: Reduce from the standard 3Sat problem.

)
10



27.B. Describe a polynomial-time reduction from NoMixedClauses3Sat to 3Sat.

28 The president of Sham-Poobanana University is planning An Uno�cial St. Brigid's Day party for the
university sta�.1 His sta� has a hierarchical structure; that is, the supervisor relation forms a directed,
acyclic graph, with the president as the only source, and with an edge from person i to person j in the
graph if and only if person i is an immediate supervisor of person j. (Many sta� members have multiple
positions, and thus have several immediate supervisors.) In order to make the party fun for all guests, the
president wants to ensure that if a person i attends, then none of i's immediate supervisors can attend.

By mining each sta� member's email and social media accounts, Sham-Poobanana University Human
Resources has determined a �party-hound� rating for each sta� member, which is a non-negative real
number re�ecting how likely it is that the person will leave the party wearing a monkey suit and a
lampshade.

Show that it is NP-hard to determine a guest-list that maximizes the sum of the party-hound ratings of
all invited guests, subject to the supervisor constraint.(
Hint: This problem can be solved in polynomial time when the input graph is a tree!

)
29 Prove that the following problem (which we callMatch) is NP-hard. The input is a �nite set S of strings,

all of the same length n, over the alphabet {0, 1, 2}. The problem is to determine whether there is a string
w ∈ {0, 1}n such that for every string s ∈ S, the strings s and w have the same symbol in at least one
position.

For example, given the set S = {01220, 21110, 21120, 00211, 11101}, the correct output is True, be-
cause the string w = 01001 matches the �rst three strings of S in the second position, and matches the
last two strings of S in the last position. On the other hand, given the set S = {00, 11, 01, 10}, the
correct output is False.(
Hint: Describe a reduction from SAT (or 3SAT)

)
30 Consider the following solitaire game. The puzzle consists of an n×m grid of squares, where each square

may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove
some of the given stones so that the remaining stones satisfy two conditions:

(1) Every row contains at least one stone.

(2) No column contains stones of both colors.

For some initial con�gurations of stones, reaching this goal is impossible; see the example below.

Prove that it is NP-hard to determine, given an initial con�guration of red and blue stones, whether this
puzzle can be solved.

Figure 2: (Left) A solvable puzzle and one of its many solutions. (Right) An unsolvable puzzle.

1As I'm sure you already know, St. Brigid of Kildare is one of the patron saints of Ireland, chicken and dairy farmers, and

academics.

11



31 To celebrate the end of the semester, Professor Jarling wants to treat himself to an ice-cream cone at the
Polynomial House of Flavors. For a �xed price, he can build a cone with as many scoops as he'd like.
Because he has good balance (and because we want this problem to work out), Prof. Jarling can balance
any number of scoops on top of the cone without it tipping over. He plans to eat the ice cream one scoop
at a time, from top to bottom, and doesn't want more than one scoop of any �avor.

However, he realizes that eating a scoop of bubblegum ice cream immediately after the scoop of potatoes-
and-gravy ice cream would be unpalatable; these two �avors clearly should not be placed next to each
other in the stack. He has other similar constraints; certain pairs of �avors cannot be adjacent in the
stack.

He'd like to get as much ice cream as he can for the one fee by building the tallest cone possible that meets
his �avor-incompatibility constraints. Prove that Prof. Jarling's problem is NP-hard.

32 Prove that the following problems are NP-hard.

32.A. Given an undirected graph G, does G contain a simple path that visits all but 17 vertices?

32.B. Given an undirected graph G, does G have a spanning tree in which every node has degree at most
23?

32.C. Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

33 Prove that the following problems are NP-hard.

33.A. Given an undirected graph G, is it possible to color the vertices of G with three di�erent colors, so
that at most 31337 edges have both endpoints the same color?

33.B. Given an undirected graph G, is it possible to color the vertices of G with three di�erent colors, so
that each vertex has at most 8675309 neighbors with the same color?

34 At the end of every semester, Je� needs to solve the following ExamDesign problem. He has a list of
problems, and he knows for each problem which students will really enjoy that problem. He needs to
choose a subset of problems for the exam such that for each student in the class, the exam includes at
least one question that student will really enjoy. On the other hand, he does not want to spend the entire
summer grading an exam with dozens of questions, so the exam must also contain as few questions as
possible. Prove that the ExamDesign problem is NP-hard.

35 Which of the following results would resolve the P vs. NP question? Justify each answer with a short
sentence or two.

35.A. The construction of a polynomial time algorithm for some problem in NP.

35.B. A polynomial-time reduction from 3Sat to the language {0n1n | n ≥ 0}.
35.C. A polynomial-time reduction from {0n1n | n ≥ 0} to 3Sat.
35.D. A polynomial-time reduction from 3Color to MinVertexCover.

35.E. The construction of a nondeterministic Turing machine that cannot be simulated by any deterministic
Turing machine with the same running time.

12



Greedy Algorithms

Remember that you will receive zero points for a greedy algorithm, even if it is perfectly correct, unless you
also give a formal proof of correctness.

36 Recall the class scheduling problem described in lecture on Tuesday. We are given two arrays S[1 .. n]
and F [1 .. n], where S[i] < F [i] for each i, representing the start and �nish times of n classes. Your goal
is to �nd the largest number of classes you can take without ever taking two classes simultaneously. We
showed in class that the following greedy algorithm constructs an optimal schedule:

Choose the course that ends �rst, discard all con�icting classes, and recurse.

But this is not the only greedy strategy we could have tried. For each of the following alternative greedy
algorithms, either prove that the algorithm always constructs an optimal schedule, or describe a small
input example for which the algorithm does not produce an optimal schedule. Assume that all algorithms
break ties arbitrarily (that is, in a manner that is completely out of your control).(
Hint: Exactly three of these greedy strategies actually work.

)
36.A. Choose the course x that ends last, discard classes that con�ict with x, and recurse.

36.B. Choose the course x that starts �rst, discard all classes that con�ict with x, and recurse.

36.C. Choose the course x that starts last, discard all classes that con�ict with x, and recurse.

36.D. Choose the course x with shortest duration, discard all classes that con�ict with x, and recurse.

36.E. Choose a course x that con�icts with the fewest other courses, discard all classes that con�ict with x,
and recurse.

36.F. If no classes con�ict, choose them all. Otherwise, discard the course with longest duration and recurse.

36.G. If no classes con�ict, choose them all. Otherwise, discard a course that con�icts with the most other
courses and recurse.

36.H. Let x be the class with the earliest start time, and let y be the class with the second earliest start
time.

� If x and y are disjoint, choose x and recurse on everything but x.
� If x completely contains y, discard x and recurse.
� Otherwise, discard y and recurse.

36.I. If any course x completely contains another course, discard x and recurse. Otherwise, choose the
course y that ends last, discard all classes that con�ict with y, and recurse.

37 Binaria uses coins whose values are 1, 2, 4, . . . , 2k, the �rst k powers of two, for some integer k. As in
most countries, Binarian shopkeepers always make change using the following greedy algorithm:

MakeChange(N):

if N = 0
say �Thank you, come again!�

else
c← largest coin value such that c ≤ N
give the customer one c cent coin
MakeChange(N − c)

13



For example, to make 37 cents in change, the shopkeeper would give the customer one 32 cent coin, one
4 cent coin, and one 1 cent coin, and then say �Thank you, come again!� (For purposes of this problem,
assume that every shopkeeper has an unlimited supply of each type of coin.)

Prove that this greedy algorithm always uses the smallest possible number of coins.
(
Hint: Prove that

the greedy algorithm uses at most one coin of each denomination.
)

38 Let X be a set of n intervals on the real line. We say that a set P of points stabs X if every interval in X
contains at least one point in P . Describe and analyze an e�cient algorithm to compute the smallest set
of points that stabs X. Assume that your input consists of two arrays L[1 . . n] and R[1 . . n], representing
the left and right endpoints of the intervals in X. If you use a greedy algorithm, don't forget to prove
that it is correct.

14



Turing Machines and Undecidability

The only undecidability questions on this semester's �nal exam will be True/False or short-answer,
but the following problems might still be useful to build intuition.

For each of the following languages, either sketch an algorithm to decide that language or prove that the
language is undecidable, using a diagonalization argument, a reduction argument, closure properties, or some
combination of the above. Recall that wR denotes the reversal of string w.

39 ∅

40
{
0
n
1
n
2
n
∣∣ n ≥ 0

}
41

{
A ∈ {0, 1}n×n

∣∣ n ≥ 0 and A is the adjacency matrix of a dag with n vertices
}

42
{
A ∈ {0, 1}n×n

∣∣ n ≥ 0 and A is the adjacency matrix of a 3-colorable graph with n vertices
}

43
{
⟨M⟩

∣∣ M accepts ⟨M⟩R
}

44
{
⟨M⟩

∣∣ M accepts ⟨M⟩R
}
∩

{
⟨M⟩

∣∣ M rejects ⟨M⟩R
}

45
{
⟨M⟩#w

∣∣ M accepts wwR
}

46
{
⟨M⟩

∣∣ M accepts HELLO
}

47
{
⟨M⟩

∣∣ M rejects HELLO
}

48
{
⟨M⟩

∣∣ M accepts at least one palindrome
}

49 Σ∗ \
{
⟨M⟩

∣∣ M accepts at least one palindrome
}

50
{
⟨M⟩

∣∣ M rejects at least one palindrome
}

51
{
⟨M⟩

∣∣ M accepts exactly one string of length ℓ, for each integer ℓ ≥ 0
}

52 {⟨M⟩ | Accept(M) has an in�nite fooling set}

53 {⟨M⟩#⟨M ′⟩ | Accept(M) ∩Accept(M ′) ̸= ∅}

54 {⟨M⟩#⟨M ′⟩ | Accept(M)⊕Reject(M ′) ̸= ∅} � Here ⊕ means exclusive-or.

15


