Basics of Complexity




/ “Complexity” = resources \

* time

* space
* ink

* gates
* energy

\_ /




/ Complexity is a function \

 Complexity = f (input size)
* Value depends on:
— problem encoding

e adj. list vs. adj matrix

— model of computation
* Cray vs TM ~0O(n3) difference

\_ /




/ TM time complexity \

Model: k-tape deterministic TM (for any k)

DEF: M is T(n) time bounded iff for every n, for
every input w of size n, M(w) halts within T(n)
transitions.

— T(n) means max {n+1, T(n)}
(so every TM spends at least linear time).
— worst case time measure

— L recursive > for some function T, L is accepted by
a T(n) time bounded TM.




/ TM space complexity \

Model: “Offline” k-tape TM.
read-only input tape
k read/write work tapes initially blank

DEF: M is S(n) space bounded iff for every n, for
every input w of size n, M(w) halts having
scanned at most S(n) work tape cells.

— Can use less than linear space
— If S(n) =2 log nthen wlog M halts

\— worst case measure /




/ Complexity Classes \

Dtime(T(n)) =

{L | existsa deterministic T(n) time-bounded
TM accepting L}

Dspace(S(n)) =

{L | exists a deterministic S(n) space-bounded
TM accepting L}

E.g., Dtime(n), Dtime(n?), Dtime(n>”), Dtime(2"),
Dspace(log n), Dspace(n), ...




/ Linear Speedup Theorems \

“Why constants don’t matter”: justifies O( )

If T(n) > linear”, then for every constantc > 0,
Dtime(T(n)) = Dtime(cT(n))

For every constantc > 0,
Dspace(S(n)) = Dspace(cS(n))

(Proofidea: to compress by factor of 100, use symbols that jam 100
symbolsinto 1. For time speedup, more complicated.)

\ 7o Y,




/ Tape Reduction \

 If Lis acceptedby a S(n) space-bdd k-tape TM,
then L is also by a S(n) space-bdd 1-tape TM.

ldea: M’ simulates M on 1 tape using k tracks

 IfLisacceptedbya T(n)time-bdd k-tape TM,
then L is also accepted by:
— A (T(n))? time-bdd 1-tape TM [proved earlier]
— A T(n)log T(n) time-bdd 2-tape TM [very clever]

\_ /




/ Time & Space Hierarchies \

With more time or space, we can compute more

If inf _ 5. S1(n)/S,(n) = 0 (e.g., S; =0(S,))
Then Dspace(S,(n)) C Dspace(S,(n))

Ifinf ., 5 .. T,(n)log T,(n)/T,(n) =0
Then Dtime(T,(n)) C Dtime(T,(n))

\ also requires that Sy, S,, and T, are “constructible” /




/ Time & Space Hierarchies \

Dspace(n3)

Dtime(n2)

Dspace(n?)

Dspace(n)

Dspace(log n)

Dtime(n log n)




ﬂ?elationships between Time & Spach

* Dtime(f(n)) C Dspace(f(n))
You can only use as much space as you have time

Different constant ¢ for each L

e Dspace(f(n)) C Dtime(cfn) Fauivalently, 200

[iffis constructible and f{n) > log n]

If you only have f(n) space, the number of IDs is
bounded by ") before you start looping, so may as
well halt.  [exercise: whatisc?]

\_ /




éoal: define “efficient” computation\

P = U Dtime(nX)

k>0

“Deterministic Polynomial Time”

Union over all polynomials p of Dtime(p(n)))

\_ /




/ Worst-case \

Advantages
e easy to analyze

* gives guarantee

 don’t have to decide what “typical” inputs are

Disadvantages

* bizarre inputs created by bored mathematicians
oroving lower bounds can force algorithms to take

\)nger than any input you’re ever liable to see /




/ Reasons why P is a bad def

* Worst case
* Asymptotic
* |lgnores constants: 10'%n versus 101992"

\_

N\

/




/ Reasons why P is a good def \

 Model invariance (RAM, TM, Cray, ...)

* [nvariant to input encoding

* poly(poly(n)) = poly(n), so “efficient” composes
* Typical algs found are O(nsmall-constant)

* Moderate growth rate of polys vs. exps...

\_ /




Understatement: Exponentials are Big

1,000,000,000,000,000 operations per second

n n"2 n"3 n"5 2°\n n!
10 1E-13 1E-12 1E-10 1.024E-12
20 4E-13 8E-12 3.2E-09 1.04858E-09
30 9E-13 2.7E-11 2.43E-08 1.07374E-06
40 1.6E-12 6.4E-11 1.024E-07 0.001099512
50 2.5E-12 1.25E-10 3.125E-07 1.125899907
60 3.6E-12 2.16E-10 7.776E-07

70 4.9E-12 3.43E-10 1.6807E-06

80 6.4E-12 5.12E-10 3.2768E-06

90 8.1E-12 7.29E-10 5.9049E-06

100 1E-11 1E-09 0.00001

Death of Sun: 5 GigaYears




Understatement: Exponentials are Big

1,000,000,000,000,000 operations per second

n
10
20
30
40
50
60
70
80
90

100

n"2
1E-13
4E-13
9E-13
1.6E-12
2.5E-12
3.6E-12
4.9E-12
6.4E-12
8.1E-12

1E-11

n"3
1E-12
8E-12

2.7E-11

6.4E-11
1.25E-10
2.16E-10
3.43E-10
5.12E-10
7.29E-10
1E-09

n"5
1E-10
3.2E-09
2.43E-08
1.024E-07
3.125E-07
7.776E-07
1.6807E-06
3.2768E-06
5.9049E-06
0.00001

2°n
1.024E-12
1.04858E-09
1.07374E-06
0.001099512
1.125899907
19 min
13 days
38 years
39K years
40M years

Death of Sun: 5 GigaYears

n!
3.6288E-09:
2432.902008!
.SE+25 Years!
silly |

silly:

silly!

silly:

silly |

silly:




