
Basics	of	Complexity



“Complexity”	=	resources

• time
• space
• ink
• gates
• energy



Complexity	is	a	function

• Complexity	=	f (input	size)
• Value	depends	on:
– problem	encoding
• adj.	list	vs.	adj matrix

– model	of	computation
• Cray	vs TM		~O(n3)	difference



TM	time	complexity
Model:		k-tape	deterministic	TM	(for	any	k)

DEF:		M	is	T(n) time	bounded	iff for	every	n,	for	
every	input	w of	size	n,	M(w)	halts	within	T(n)
transitions.

– T(n)	 means	max	{n+1,	T(n)}		
(so	every	TM	spends	at	least	linear	time).

– worst	case	time	measure
– L recursive	à for	some	function	T,	L	is	accepted	by	
a	T(n) time	bounded	TM.



TM	space	complexity
Model:		“Offline”	k-tape	TM.
read-only	input	tape
k read/write	work	tapes	initially	blank

DEF:		M	is	S(n) space	bounded	iff for	every	n,	for	
every	input	w of	size	n,	M(w)	halts	having	
scanned	at	most	S(n) work	tape	cells.

– Can	use	less	than	linear	space
– If		S(n)	≥	log	n then	wlogM halts
– worst	case	measure



Complexity	Classes
Dtime(T(n)) =	

{L |	exists	a	deterministic	T(n) time-bounded	
TM	accepting	L}

Dspace(S(n)) =	
{L |	exists	a	deterministic	S(n) space-bounded	

TM	accepting	L}

E.g.,	Dtime(n),	Dtime(n2),	Dtime(n3.7),	Dtime(2n),	
Dspace(log n),	Dspace(n),	...				



Linear	Speedup	Theorems
“Why	constants	don’t	matter”:		justifies	O(	)

If	T(n) >	linear*,	then	for	every	constant	c >	0,	
Dtime(T(n))	=	Dtime(cT(n))

For	every	constant	c >	0,	
Dspace(S(n))	=	Dspace(cS(n))

(Proof	idea:		to	compress	by	factor	of	100,	use	symbols	that	jam	100	
symbols	into	1.		For	time	speedup,	more	complicated.)

* T(n)/n à∞



Tape	Reduction

• If	L is	accepted	by	a	S(n) space-bdd k-tape	TM,	
then	L is	also	by	a	S(n) space-bdd 1-tape	TM.

Idea:		M’	simulates	M	on	1	tape	using	k tracks

• If	L is	accepted	by	a	T(n) time-bdd k-tape	TM,	
then	L	is	also	accepted	by:
– A	(T(n))2 time-bdd 1-tape	TM		[proved	earlier]
– A	T(n)	log	T(n) time-bdd 2-tape	TM		[very	clever]



Time	&	Space	Hierarchies

With	more	time	or	space,	we	can	compute	more

If	inf n à∞ S1(n)/S2(n)		=	 0 (e.g.,	S1 =	o(S2))

Then	Dspace(S1(n))	 Dspace(S2(n))

If	inf nà∞ T1(n)	log	T1(n)	/	T2(n)		=	 0
Then	Dtime(T1(n))	 Dtime(T2(n))

also	requires	 that	S1,	S2,	and	T2 are	“constructible”



Time	&	Space	Hierarchies

Dtime(n)

Dtime(n log	n)

Dtime(n2)

Dtime(n3)

.

.

.

Dspace(log n)

Dspace(n)

Dspace(n2)

Dspace(n3)

.

.

.

TIME SPACE



Relationships	between	Time	&	Space
• Dtime(f(n)) Dspace(f(n))	
You	can	only	use	as	much	space	as	you	have	time

• Dspace(f(n)) Dtime(c f(n))
[if	f is	constructible	and	f(n)	≥	log	n]	

If	you	only	have	f(n)	space,	the	number	of	IDs	is	
bounded	by	cf(n)	before	you	start	looping,	so	may	as	
well	halt.						[exercise:		what	is	c ?	]

Different	constant	c for	each	L
Equivalently,	2O(f(n))



Goal:		define		“efficient”	computation

P	= Dtime(nk)
k ≥	0

“Deterministic	Polynomial	Time”

Union	over	all	polynomials	p of	Dtime(p(n)))



Worst-case
Advantages
• easy	to	analyze
• gives	guarantee
• don’t	have	to	decide	what	“typical”	inputs	are

Disadvantages
• bizarre	inputs	created	by	bored	mathematicians	
proving	lower	bounds	can	force	algorithms	to	take	
longer	than	any	input	you’re	ever	liable	to	see



Reasons	why	P	is	a	bad	def

• Worst	case
• Asymptotic
• Ignores	constants:			10100n				versus	10-1002n



Reasons	why	P	is	a	good	def

• Model	invariance		(RAM,	TM,	Cray,	...)
• Invariant	to	input	encoding
• poly(poly(n))	=	poly(n),	so	“efficient”	composes
• Typical	algs found	are	O(nsmall-constant)
• Moderate	growth	rate	of	polys vs.	exps...



Understatement:	Exponentials	are	Big

Death	of	Sun:		5	GigaYears



Understatement:	Exponentials	are	Big

Death	of	Sun:		5	GigaYears


